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Abstract 
Mangrove ecosystems play a critical role in maintaining coastal health; however, they are increasingly threa-

tened by anthropogenic activities and climate change. Health assessment is essential for effective conserva-

tion efforts. However, traditional remote sensing techniques such as the normalised difference vegetation 

index (NDVI) may not fully capture the complex physiological processes influencing vegetation health. 

Therefore, this study investigated chlorophyll (Chl) dynamics in mangroves using remote sensing tech-

niques, including the NDVI and a novel method, the normalised area over reflectance curve (NAOC), via 

Sentinel-2 satellite imagery during October 2023, and analysed spatial variations in Chl content (CC) via the 

Google Earth Engine API. NDVI and NAOC-Chl were weakly correlated (0.47), highlighting their comple-

mentary roles. The average NDVI and NOAC-Chl values for different species were analysed, and Rhizo-

phora mucronata presented the highest value (NDVI: 0.86 ± 0.08, NOAC: 20.48 ± 4.49 𝜇𝑔/𝑐𝑚2), whereas 

Sonneratia alba presented the lowest average CC (NDVI: 0.73 ± 0.07, NOAC: 13.45 ± 3.02 𝜇𝑔/𝑐𝑚2). The 

study also revealed spatial variations in CC, with potential stress near urban and water body areas and 

healthier vegetation in core than in the other regions. The disparities between northern and southern China 

suggest the impacts of human activity and climate change. We observed potential negative effects of unre-

gulated tourism. This study provides insights for informed conservation strategies by demonstrating the va-

lue of combining remote sensing techniques and highlighting the importance of sustainable tourism practices. 

Keywords: Google Earth Engine; Sentinel 2; Mangroves; Canopy chlorophyll; Vegetation health. 

1. Introduction 

The global mangrove ecosystem spans approximately 13.7 million hectares across 118 countries 

(Pastor-Guzman et al., 2015; Wang et al., 2023), whereas in Southeast Asia, mangroves extend 

over 4,000,000 ha and constitute 32.2% of the global mangrove area (Fauzi et al., 2019). Man-

grove forests serve as indispensable ecosystems, offering a plethora of direct and indirect services, 

such as acting as natural protection barriers and nursery habitats for marine organisms (Barbier & 

Strand, 1998; Ewel et al., 1998; Pastor-Guzman et al., 2015). The potential of mangroves as car-

bon sinks has garnered increasing attention recently, with estimates suggesting that mangrove 

carbon storage ranges from ~160 to ~1,000 Mg·ha−1, contingent upon factors such as location, 

species composition, height, and canopy closure (Lagomasino et al., 2019; Matsui, 1998; Pastor-

Guzman et al., 2015). Despite their ecological importance and role in climate change mitigation, 

mangroves face significant threats including deforestation and land-use conversion (Akram et al., 

2023; Arifanti et al., 2021). 

Climate change has become the focus of discussions surrounding the fate of mangrove ecosystems 

as a combination of factors, including escalating temperatures, rising sea levels, greenhouse gas 

concentrations, shifts in ocean circulation and precipitation patterns, and an increase in extreme 

weather events, exert considerable pressure on these coastal habitats (Akram et al., 2023; Alongi, 

2022). The responses of mangroves to these environmental challenges hinge on the pivotal ques-

tion of whether critical thresholds have been breached (Saenger et al., 1983). 

The productivity and carbon uptake of mangroves are closely related to photosynthesis, a process 

that depends on the availability of leaf pigments, with chlorophyll (Chl) being the main pigment 

(De et al., 2021; Grove, 2017). Variations in leaf pigments serve as indicators of physiological 

status, senescence, and stress, and mangroves display pigment differences among species and 

health conditions (Hati et al., 2021; Ku et al., 2023; Pineda & Barón, 2022). Given their sensitivity 

to environmental gradients, particularly those induced by seasonal variations, such as water avai-

lability, understanding the Chl content (CC) is crucial for monitoring mangrove health and pro-

ductivity (Cavalcanti et al., 2022; Minu et al., 2020; Wang & Gu, 2021). 

Citation:  

Ahammed, B. K. K., Karang, I. W. G. A., 

Nuarsa, I. W., Indrawan, I. G. S., Dewi, N. 

M. N. B. S., & Pandey, A. C. (2024).   Map-

ping of the Spatio-Spectral Dynamics of 

Mangrove Chlorophyll Con-centrations via 

Sentinel-2 Satellite Imagery. Forum Geo-

grafi. 38(2), 244-246. 

 

 

Article history:  

Received: 11 March 2024 

Revised: 27 July 2024 

Accepted:  28 July 2024 

Published: 27 August 2024 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright: © 2024 by the authors. Sub-

mitted for possible open access publication 

under the terms and conditions of the Crea-

tive Commons Attribution (CC BY) li-

cense (https://creativecommons.org/li-

censes/by/4.0/). 

about:blank


Forum Geografi, 38(2), 2024; DOI: 10.23917/forgeo.v38i2.4518  

Ahammed et al.  Page 245   

Because of their unique adaptation to coastal environments, mangroves are exposed to an array 

of stressors induced by climate change (Kumari & Rathore, 2021). Elevated temperatures not only 

directly impact mangrove physiology but also influence sea levels through thermal expansion and 

the melting of polar ice, leading to altered inundation patterns (Beck Eichler & Barker, 2020; 

Çelekli & Zariç, 2023; Röthig et al., 2023). Changes in precipitation patterns and ocean circula-

tion further contribute to shifts in salinity levels, potentially exceeding the tolerance limits for 

mangrove species (de Lacerda et al., 2022; Perri et al., 2023). 

Anthropogenic pressure driven by urbanisation and industrialisation, alongside land use change 

for agriculture and aquaculture, as well as the impact of tourism, collectively pose severe threats 

to the health of mangrove ecosystems (Basheer Ahammed & Pandey, 2021; Kumar et al., 2022; 

Moorhouse et al., 2021; Numbere, 2021; Umprasoet et al., 2023). Pollution from industrial dis-

charges, habitat destruction, and alterations in hydrological regimes disrupt the delicate balance 

of these coastal habitats. The conversion of mangrove areas to shrimp and fishponds contributes 

to habitat loss and fragmentation, and reduces resilience (Ballut-Dajud et al., 2022; Chakraborty, 

2019; Steven et al., 2020). Unregulated tourism exacerbates this issue through habitat disturbance 

and pollution (Chandel, 2022). Mitigating these challenges requires integrated coastal zone ma-

nagement, community engagement, strengthened regulations, and educational efforts to strike a 

balance between the development and preservation of critical ecosystems. 

CC estimation involves labour-intensive laboratory methods, including leaf pigment extraction 

and spectrophotometric determination (Croft et al., 2015; Croft & Chen, 2017; Pastor-Guzman et 

al., 2015). Portable Chl metres, such as SPAD and Apogee metres, offer a more practical alterna-

tive and have been successfully employed in precision agriculture in comparison to the lab mea-

surement (Kamarianakis & Panagiotakis, 2023; Musacchi et al., 2023; Odabas et al., 2017). In 

the context of mangroves, the use of portable Chl metres has shown promise, as it provides cor-

relations between CCs and metre readings. However, calibration equations are required to convert 

these readings to CCs (Dou et al., 2018; Jiang et al., 2008; Li et al., 2023; Neres et al., 2020). 

Remote sensing has emerged as a powerful tool for estimating the CC, offering radiative transfer 

models and vegetation indices (VIs) (Ahmad et al., 2020; Carmona et al., 2015; Dou et al., 2018; 

Liang et al., 2016). Although radiative transfer models require computational resources, VIs re-

present a computationally simpler and accurate approach. VIs derived from hyperspectral and 

multispectral data have been applied to estimate vegetation CC in various settings. However, their 

application in mangrove forests remains relatively understudied (Connelly, 1997; Flores-de-San-

tiago et al., 2013b, 2013a). This study sought to bridge this gap by assessing the performance of 

selected broadband VIs in predicting CC at the canopy level. Furthermore, it aimed to establish a 

link between the CCs of different species on the ground and Sentinel-2 (S2) data, paving the way 

for mapping the spatial distribution and variability of mangrove CCs at the landscape level. S2 

strikes a good balance between high spatial resolution, multispectral capabilities, free access, and 

revisit frequency (Sentinel 2021), making it a valuable tool for studying Chl dynamics in man-

groves. This study not only contributes to our understanding of mangrove ecosystems but also 

introduces the potential use of S2 data in mapping CCs, presenting valuable advancements in 

mangrove research. 

Mangrove ecosystems are critical for coastal health; however, anthropogenic activities and cli-

mate change threaten their well-being. Traditional methods for assessing mangrove health do not 

provide a comprehensive picture, particularly at the species level. The present study addresses 

this gap by developing a method to invert canopy CCs in mangroves using high-resolution mul-

tispectral S2 satellite data. We employed both the established normalised difference vegetation 

index (NDVI) and novel normalised area over reflectance curve (NOAC) index. Although NDVI 

is widely used for vegetation monitoring, NOAC have undergone limited exploration, particularly 

in the context of mangroves. This research aimed not only to enhance our understanding of man-

grove health but also to provide practical guidance for future monitoring and conservation efforts 

in the Tahura Ngurah Rai mangrove area (Benoa Bay) in Bali, Indonesia. 

2. Materials and methods 
2.1. Study area 

The present study was carried out in the Tahura Ngurah Rai mangrove area (Benoa Bay), located 

in the Kuta and South Kuta Districts, Badung Regency, and Serangan Island, South Denpasar 

District, Denpasar City of Bali, Indonesia, with coordinates 08°41′–08°47′ South Latitude and 

115°10′–115°15′ East Latitude (Figure 1). Bali has distinct tropical, wet, and dry climates. The 

wet season (November–April) is characterised by monsoon rains, with an average monthly rain-

fall of 341.62 mm in January. Conversely, the dry season (May–October) is cooler and less humid, 
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with average monthly rainfall dropping to a minimum of 39.93 mm in August. The annual average 

rainfall is 234–287 mm. Bali’s topography is dominated by Gunung Agung, a 3,148 m stratovol-

cano, and the island’s total coastline stretches for approximately 530 km, encompassing diverse 

features. Coastal areas include mangroves, beaches, and cliffs. 

Bali, renowned for its vibrant tourism industry, faces significant challenges in the preservation of 

mangroves and other shallow-water ecosystems, resulting in the loss and deterioration of their 

health (Mahasani et al., 2015; Sugiana et al., 2022; Karang et al., 2024). Mangrove areas are 

particularly vulnerable to these changes and experience direct impacts from land reclamation on 

tourist infrastructure and associated pollution from increased human activities (Newton et al., 

2020; Steven et al., 2020). Coastal development can disrupt the natural hydrological patterns and 

affect the balance between salinity and water flow, which is crucial for mangrove health (Monta-

gna et al., 2012; Newton et al., 2020; White & Kaplan, 2017). 

 

Figure 1. Location map of the study area: a) administrative area of Indonesia. b) Administrative area of Bali 

Province. c) Study area showing the locations of mangrove sample sites with dominant species. 

2.2. Data acquisition 

To determine the leaf canopy CC in various mangrove species, multiple field sampling surveys 

were conducted between October and November, 2023. The Global Positioning System (GPS) 

locations of the centre points from the 10 × 10 m field plots and the most dominant tree species 

in the field plot corresponding to the GPS location were collected (Figure 1). The sample points 

were strategically selected based on the accessibility and diversity of the species and were equally 

distributed across the study area. These sampling points were used for canopy CC mapping. This 

study focused on six mangrove stand types: Avicennia marina, Bruguiera gymnorrhiza, Ceriops 

tagal, Rhizophora apiculata, Rhizophora mucronata, and Sonneratia alba. S2 imagery with a re-

solution of 10 m guided the selection of 89 plots that were strategically positioned to encompass 

extensive patches dominated by individual species. This approach was followed to ensure the 

acquisition of pure pixels, each representing a distinct mangrove species. 

2.3. Image acquisition and processing 

S2 provides 13 spectral bands with varying spatial resolutions of 10–60 m (Table 1) and three 

red-edge bands (670–760 nm), which have proven successful in retrieving vegetation parameters. 

In this study, cloudless S2 level-2A surface reflectance products with radiometric and geometric 

corrections were acquired and processed via the Google Earth engine API, and their acquisition 

times ranged from 01–10–2023 to 20–11–2023 as the fieldwork was conducted between October 

and November. Twenty cloud-free images were acquired during this period. The means of all 
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available images were selected for further analysis. Averaging filters can help reduce noise and 

potentially improve the accuracy of CC estimates, particularly in areas with low inherent spatial 

variability (Xue et al., 2023). All bands were resampled to a 10 m spatial resolution. Furthermore, 

10 m spatial resolution bands were utilised for further analysis (Figure 2). 

Table 1. General description of the Sentinel 2A and 2B satellite images. 

Band name 
Pixel size (m) 

Wavelength S2A/S2B 

(mm) Description 

B1 60 443.9/442.3 Aerosols 

B2 10 496.6/492.1 Blue 

B3 10 560/559 Green 

B4 10 664.5/665 Red 

B5 20 703.9/703.8 Red edge 1 

B6 20 740.2/739.1 Red edge 2 

B7 20 782.5/779.7 Red edge 3 

B8 10 835.1/833 NIR 

B8A 20 864.8/864 Red edge 4 

B9 60 945/943.2 Water vapour 

B11 20 1,613.7/1,610.4 SWIR 1 

B12 20 2,202.4/2,185.7 SWIR 2 

2.4. Estimating canopy Chl value with VIs 

VIs are crucial tools for estimating CC and leaf area index (LAI) in scientific research (Broge & 

Leblanc, 2001; Haboudane et al., 2002; Liang et al., 2016; Sun et al., 2019). These indices sim-

plify complex multispectral data and convert them into single variables for predicting and asses-

sing various vegetation characteristics (Sun et al., 2019). Among these indices, the NDVI (Weier 

& Herring, 2000) is a widely recognised and commonly employed metric. 

The NDVI is calculated using Equation 1. 

𝑁𝐷𝑉𝐼 =
𝜌833 − 𝜌665

𝜌833 + 𝜌665
 

(1) 

Here, 𝜌𝑖 represents the reflectance at the band centred at a specific wavelength i (in nm). CC, 

green biomass, nitrogen content, and LAI have been widely proven useful in diverse studies on 

plant development (Fava et al., 2009; Pu et al., 2008). In addition, numerous alternative indices 

sensitive to LAI have been proposed, often utilising bands in the red-edge regions (Daughtry et 

al., 2000; Glenn et al., 2008; Haboudane et al., 2002). The typical spectra of vegetation present a 

plateau above 750–800 nm, which is determined by the structure and composition of leaves (As-

ner et al., 1998); the soil response, excluding the Chl, is relatively featureless. The influence of 

Chl induces a minimum reflectance at approximately 665 nm, such that greater the presence of 

Chl. To estimate the amount of Chl in plants from multispectral data, the normalised area over the 

reflectance curve (NAOC) yields the best results among the other VIs, and thus, the NOAC was 

employed (Delegido et al., 2010). Because S2 had many (narrow) bands available, it was possible 

to derive vegetation characteristics using a more continuous approach instead of using only two 

bands. Notably, certain characteristics of the S2 instrument, such as spatial size and signal-to-

noise ratio, were not explicitly considered in the analysis. The S2 band configuration features 

three spectral bands situated in the red-edge region: bands B5 and B6 are positioned at the sharp 

edge, and band B7 is situated at the shoulder of the near-infrared (NIR) plateau. Importantly, these 

three bands, along with the B4 band, were aligned precisely within the integration limits of 

NAOC. The NAOC index was used to estimate the CC and was defined as described previously 

(Delegido et al., 2010). Using the available bands in S2, the NAOC for estimating the CC was 

obtained with integration limits from a = 665 nm to b = 783 nm, resulting in a final expression for 

NAOC given by Equation 2. 

𝑁𝐴𝑂𝐶 = 1 −
∫ 𝜌 𝑑𝜆

779
665

118 𝜌783
  

(2) 

Furthermore, the CC estimated using NAOC can be expressed as follows (Equation 3). 

𝐶ℎ𝑙 (𝜇𝑔/𝑐𝑚2) = −3.8868 + 101.94 ∗ 𝑁𝐴𝑂𝐶   (3) 

The NAOC has demonstrated its reliability as a predictor of Chl. In a recent study that compared 

its predictive efficacy against 32 established indices sensitive to Chl, NAOC was one of the best 
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performers, securing a position within the top three indices in terms of accuracy (Verrelst et al., 

2011). 

 

Figure 2. Schematic representation of the methodology workflow. 

3. Results and Discussion 

3.1. Spatial variation in CC 

The assessment of leaf CC via S2 imagery has emerged as a pivotal element in understanding the 

intricate dynamics of vegetation health and ecological processes within the studied mangrove 

ecosystems. The observed NOAC-Chl ranged from 33.64 to 0 (Figure 3a), signifying a compre-

hensive depiction of vegetation conditions, with lower values coinciding with areas devoid of 

vegetation. The calculated average CC of 2.34 ± 8.92 provides a baseline metric for evaluating 

the overall Chl abundance in the study area. The observed NDVI values ranged between −0.66 

and 0.97 (Figure 3b). 

The spatial distribution of CC offers intriguing insights into the ecological dynamics of the man-

grove landscape. The lowest CC in areas adjacent to water bodies and built-up structures sug-

gested the presence of potential stressors in these regions (Figure 4). Vegetation in such areas is 

more stressed than that in other areas due to pollutants in the air and soil (Czaja et al., 2020; 

Kannankai et al., 2022; Zhao et al., 2024). Conversely, the observation of the highest CC in the 

core areas of the mangrove patches indicates robust and healthy vegetation in these central regions 

owing to the absence of pollutants (Hai et al., 2021). This spatial heterogeneity in CC reveals the 

potential impacts of urbanisation and proximity to water bodies on the Chl dynamics of mangrove 

ecosystems (Wong et al., 2021; Zhao et al., 2024). 

Notably, a distinct pattern was observed, with high-Chl patches predominantly located in the nor-

thern part of the study area, whereas areas in the southern part of the study area presented signs 

of stress. This spatial variation may be attributed to a combination of factors, including develop-

mental activities, waste disposal, and the influence of climate change scenarios such as rising 

temperatures and salinity (Arifanti 2020; Ng & Ong 2021). The suggestion of stress in the 
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southern areas necessitates further investigation to unravel the intricate interplay between anthro-

pogenic and environmental factors influencing mangrove health. 

 

Figure 3. Maps showing the spatial variation in mangrove health derived from vegetation indices: a) NDVI 

and b) NOAC-Chl. (𝜇𝑔/𝑐𝑚2). 

 

Figure 4. Land use/landcover map of the study area. 

These findings highlight the utility of S2 in providing detailed insights into the spatial distribution 

of Chl, thereby enabling the identification of areas under potential stress and those exhibiting 

healthier vegetation conditions (Misra et al., 2020). This knowledge is crucial for targeted con-

servation and management strategies, especially in urbanised and water-body-adjacent regions 
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where mangroves face heightened challenges (Czaja et al., 2020; Kannankai et al., 2022; Zhao et 

al., 2024). Future analyses should delve deeper into the specific drivers of stress and their impli-

cations for mangrove resilience to offer a foundation for informed decision-making and sustai-

nable management practices in the face of evolving environmental dynamics. 

3.2. Canopy CC in mangrove species 

The results obtained from the estimation of the CC in mangrove plant canopies using S2 imagery 

provide valuable insights into the ecological dynamics of different mangrove species. The appli-

cation of the NDVI revealed distinct variations in vegetation density and health among the studied 

species (Rugel et al., 2017). Ceriops tagal had the highest NDVI (0.94), indicating robust health, 

whereas R. apiculate presented the lowest NDVI (0.31), suggesting potential variations in vitality. 

The observed NDVI range (0.3–0.94) (Table 2) emphasised the diverse physiological conditions 

across the mangrove ecosystem. 

Notably, the highest average NDVI values were associated with R. mucronata (0.86 ± 0.07), un-

derscoring its elevated CC. Conversely, S. alba presented the lowest average NDVI (0.73 ± 0.08), 

suggesting potential differences in its CC. R. apiculata showed the greatest variation in the NDVI-

based CC, highlighting its heterogeneous health conditions. 

The introduction of the NAOC as a novel index for CC estimation further enriches this study. The 

CC variation induced by the NOAC reinforced the diversity in CC among the studied species 

(Figure 5, Table 3). R. mucronata presented the highest average CC (20.48 ± 4.49 𝜇𝑔/𝑐𝑚2), con-

firming its robust CC, whereas S. alba presented the lowest average CC (13.45 ± 3.02 𝜇𝑔/𝑐𝑚2). 

A. marina presented the highest CC value (28.98 𝜇𝑔/𝑐𝑚2), indicating its distinct Chl richness, 

whereas R. apiculata presented the lowest CC value (6.42 𝜇𝑔/𝑐𝑚2) (Table 3). 

These findings highlight the intricate interplay among species-specific CC in mangrove ecosys-

tems. The observed variations underscore the importance of employing advanced remote sensing 

techniques, such as NDVI and NAOC, to capture nuanced ecological dynamics (Gafurov et al., 

2024; Su et al., 2024). This study not only contributes to the understanding of mangrove health 

but also provides a foundation for future ecological assessments and conservation strategies tai-

lored to the specific needs of different mangrove species. It is crucial to consider diverse Chl 

patterns in mangroves to formulate effective conservation and management practices in the face 

of environmental challenges. 

 

Figure 5. Chlorophyll concentrations in different species derived from a) the NDVI and b) NOAC-Chl. 

(𝜇𝑔/𝑐𝑚2). The box diagram shows the minimum and maximum values, and the black dots represent the 

average value of each species. 

Table 2. Statistics of the NDVI values of different species. 
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Species No of samples Mean Min Max SD 

Avicennia marina 8 0.79 0.46 0.91 0.14 

Bruguiera gymnorrhiza 4 0.84 0.76 0.90 0.07 

Ceriops tagal 5 0.85 0.80 0.94 0.05 

Rhizophora apiculata 18 0.80 0.31 0.92 0.14 

Rhizophora mucronata 12 0.86 0.69 0.92 0.07 

Sonneratia alba 42 0.73 0.57 0.92 0.08 

Table 3. Statistics of NOAC-Chl values in different species. 

Species No of samples Mean Min Max SD 

Avicennia marina 8 16.50 9.68 28.98 5.72 

Bruguiera gymnorrhiza 4 17.08 8.87 26.06 7.36 

Ceriops tagal 5 19.76 18.49 20.22 0.72 

Rhizophora apiculata 18 16.17 6.42 24.33 5.47 

Rhizophora mucronata 12 20.48 10.56 24.81 4.49 

Sonneratia alba 42 13.45 6.52 19.13 3.02 

3.3 Correlations between the NDVI and NOAC-Chl 

The observed disparity in canopy CCs estimated via NDVI and NAOC prompted a meticulous 

exploration of their distinct sensitivities to vegetation health. The relatively low correlation coef-

ficient (r² ≈ 0.43) (Figure 6) between NDVI and NOAC-Chl suggests that these indices provide 

complementary information, each capturing unique aspects of Chl distribution in the studied man-

grove ecosystem. 

 

Figure 6. Scatter plot showing the correlation between the NDVI and NOAC-Chl. 

The divergence in wavelength utilisation becomes evident in this study, with the NDVI relying 

on red and NIR bands and the NOAC incorporating multiple spectral bands in the red-edge region. 

This discrepancy in wavelength sensitivity contributed to the observed variation in CC. Owing to 

its broader spectral range, NDVI can capture different aspects of vegetation health, whereas 

NOAC, with its emphasis on red-edge bands, tends to offer a more refined perspective of Chl 

distribution (Cendrero et al., 2014; Misra et al., 2020; Sun et al., 2023). 
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A comparative analysis revealed the superior performance of NOAC in Chl estimation compared 

to that of NDVI. This outcome aligns with the understanding that indices focusing on the red-

edge region can provide more accurate assessments of CC than those focusing on the other re-

gions, owing to their heightened sensitivity to subtle variations in leaf pigments and physiological 

conditions (Chang-Hua et al., 2010; Cendrero et al., 2014; Guimarães et al., 2017). 

 

Figure 7. Scatter plots showing the correlation between the NDVI and NOAC-Chl. in different species. 

Furthermore, species-specific correlation analyses provide insights on the subtle responses of dif-

ferent mangrove species to NDVI and NOAC. Notably, R. apiculata and B. gymnorhiza presented 

greater correlations in the two indices (r² = 0.39 and 0.33, respectively) (Figure 7), indicating a 

stronger alignment between the CCs of these species, as estimated by the NDVI and NOAC. In 

contrast, S. alba displayed a notably lower correlation (r² = 0.004) (Figure 7), sugges 
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ting a potential divergence in the response of this species to the two indices. R. mucronata pre-

sented a unique  

scenario with a negative correlation (r² = −0.04), necessitating further investigation into the un-

derlying factors influencing Chl dynamics. The red-edge band is particularly valuable for iden-

tifying subtle variations in plant health and stress (Li et al., 2024). As the CC decreases due to 

stress factors, such as nutrient deficiencies, diseases, or drought, the reflectance pattern in the red-

edge region shifts (Chang-Hua et al., 2010). The red-edge band can also be helpful in differentia-

ting different vegetation types based on their CC and pigment composition. For example, healthy 

broadleaf plants typically exhibit steeper slopes in red-edge regions than do coniferous trees 

(Fernández et al., 2022). 

This study underscores the importance of selecting appropriate indices for accurate Chl estimation 

considering the unique spectral characteristics of different mangrove species. The dissimilarities 

between NDVI and NOAC highlight the need for a comprehensive approach that integrates mul-

tiple indices to capture the multifaceted nature of vegetation health in mangrove ecosystems. This 

fine understanding is crucial for developing informed conservation and management strategies 

tailored to the diverse physiological nuances of various mangrove species. 

4. Conclusion 

This study provides a comprehensive exploration of mangrove health and Chl dynamics in tropi-

cal ecosystems, using advanced remote sensing techniques. The integration of the NDVI and 

NAOC offers nuanced insights into Chl distribution among different mangrove species. The ob-

served low correlation between NDVI and NOAC-Chl underscores the distinct scenarios captured 

by these indices, emphasising the importance of their complementary use for a comprehensive 

understanding of vegetation health. 

Utilising S2 imagery, this study further enriches our understanding of CC, revealing spatial va-

riations indicative of stressors and thriving vegetation patches within mangrove landscapes. The 

identification of lower Chl values near urban areas and water bodies, coupled with higher CCs in 

core mangrove regions, than those in the other areas implies the influence of anthropogenic acti-

vities on mangrove health. The spatial disparity between the northern and southern study areas 

suggests potential impacts of developmental activities, waste disposal, and climate change scena-

rios, emphasising the need for further investigation. 

Moreover, this study addresses the broader context of anthropogenic pressures on mangrove 

health, specifically highlighting the detrimental impact of unregulated tourism practices. Boat 

traffic and recreational activities associated with tourism can cause physical damage to mangrove 

ecosystems, thereby contributing to the overall loss of mangrove areas and compromising their 

resilience. The cumulative effects of tourism-related pressures underscore the urgency of imple-

menting sustainable tourism practices, stringent regulations, and community involvement. These 

measures are essential for mitigating the negative impacts and ensuring the preservation of Bali’s 

mangrove ecosystems amid the flourishing tourism industry. 

To summarise, this study not only advances our understanding of mangrove Chl dynamics but 

also underscores the critical need for integrated conservation strategies that consider the intricate 

interplay of environmental, anthropogenic, and tourism-related factors. By adopting a holistic ap-

proach informed by the findings of this study, we can pave the way for sustainable management 

and preservation of mangrove ecosystems in the face of ongoing environmental changes and hu-

man activities. 
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