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Abstract 

Groundwater management is essential as more than one-third of the world's population relies on groundwater 
as a source of freshwater. Exploration of groundwater potential serves as a practical implementation to ensure 

accessibility to freshwater. Therefore, this study developed a machine learning (ML), deep learning (DL), 

and stacking learning (SL) based model for groundwater potential mapping in Trenggalek Regency, Indone-

sia. A total of 740 spring locations were used as training data, and 18 variables were considered in the mo-
delling. The eighteen parameters were classified into geological, topographic, land cover, climatological, 

hydrological, and geophysical factors. We used several algorithms, including gradient boosting decision 

trees (GBDT), random forest (RF), recurrent neural network (RNN), convolutional neural network (CNN), 

SL GBDT-RF, SL CNN-RNN, and SL GBDT-RF-CNN-RNN. This study optimized each basic learning task 
through hyperparameter fine-tuning using a tree-Parzen structured estimator (TPE) method. Models were 

evaluated using four metrics: accuracy (Acc), Cohen's kappa (CK), Matthews correlation coefficient (MCC), 

and receiver operating characteristic (ROC) area under the curve (AUC). Of the seven models generated, SL 

GBDT-RF achieved the best performance on the test data, with Acc, MCC, CK, and AUC values of 0.957, 
0.915, 0.915, and 0.990, respectively. The geological unit parameter has the highest relative contribution rate 

in all prediction models. Based on the best model, the study area is dominated by the low-potential class, 

accounting for 31.29%. This study contributes to providing a benchmark for the development of groundwater 

potential prediction using ML, DL, and SL algorithms across various case studies. In addition, this study can 
be used by concerned stakeholders in sustainable water resource planning, drought disaster management, 

and the prevention of inappropriate groundwater exploration. 

Keywords: Groundwater potential mapping, machine learning, deep learning, stacking learning, and hyper-

parameter optimizations. 

1. Introduction 

Groundwater is one of the freshwater resources to fulfill common needs, as well as for agriculture 

and industry (Li et al., 2020). According to AQUASTAT data published by the Food and Agri-

culture Organization (FAO), the global withdrawal rate of freshwater from groundwater in 2022 

reached 23.06%.  This places groundwater as the second-largest source of freshwater withdrawal 

in the world (FAO, 2022). Therefore, mapping groundwater potential is necessary for the sustai-

nable management of water resources (Khosravi et al., 2018), especially in Trenggalek Regency. 

This regency, located in East Java Province, Indonesia, is affected by recurrent annual drought 

(Regional Disaster Management Agency Of Trenggalek Regency, 2024). In addition, more than 

60% of the Trenggalek population relies on groundwater as a freshwater resources (Statistical 

Centre Of East Java Province, 2024). Exploration of groundwater is a de facto solution for 

ASEAN countries such as Indonesia during emergencies such as droughts (Vrba & Salamat, 

2007). The groundwater potential map shows locations that sufficiently supply freshwater re-

sources. This information can be used to formulate strategies for emergencies such as drought. 

Groundwater exploration using terrestrial methods such as drilling, hydrological, and geo-electri-

city surveys is less effective for large areas, even if it produces great accuracy (Tolche, 2021; 

Yariyan et al., 2022). Determining groundwater potential zoning using terrestrial survey tech-

niques requires high-end instruments and skilled labor. In addition, surveys are not viable in areas 

with limited accessibility (Abdelouhed et al., 2021). Consequently, terrestrial exploration of 

groundwater potential is unlikely to be feasible for large areas such as regency within a limited 

time, especially given the highly diverse geomorphological conditions in the study area. Time and 

cost remain a consideration in socio-environmental studies (Muthu & Sudalaimuthu, 2021). Geo-

graphical information system (GIS) and remote sensing (RS) data can be used for groundwater 

potential identification using specific approaches to evaluate groundwater influence parameters 

(Andualem & Demeke, 2019). Expert judgement approaches, such as the analytical hierarchy 

process (AHP), have limitations on subjectivity to compute parameter weight influencing ground-

water (Esen, 2023).  
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Currently, the latest approach is artificial intelligence (AI). Both machine learning (ML) and deep 

learning (DL) have optimal performance in predicting groundwater potential in various locations 

by considering multiple factors such as geology, climatology, topography, hydrology, and land 

cover (Pokhrel et al., 2024). These approaches are more effective than expert judgment-based 

approaches and linear statistics because they can overcome the complex and non-linear rela-

tionship between groundwater influencing factors and groundwater presence through certain sta-

tistical approaches (Nguyen et al., 2024). 

Various AI-based algorithms have been used for groundwater potential mapping. Several ML 

algorithms applied in this context include artificial neural network (ANN), logistic model tree 

(MLT), logistic regression (LR), alternating decision tree (ALT), k-nearest neighbor (KNN), ran-

dom forest (RF), AdaBoost (ADB), support vector machine (SVM), decision stump (DS), cat-

Boost (CB), extreme gradient boosting (XGBoost), and voting ensemble (VE). With these algo-

rithms, they produce area under the curve (AUC) values of 0.720 to 0.993 (Chen et al., 2020; 

Halder et al., 2024; Nguyen et al., 2024; Parasar et al., 2025; Pham et al., 2019; Sarkar et al., 

2024). In addition, Arabameri et al. (2020) conducted a study that integrates ML algorithms with 

multi-criteria decision making (MCDM). Their work produced a groundwater potential model 

with an AUC of 0.925 by integrating the frequency ratio (FR) technique, Vise Kriterijumska Op-

timizacija I Kompromisno Resenje (VIKOR), and RF. DL algorithms can recognize complex re-

lationships between dependent and independent variables, making them suitable for modelling 

applications that require high complexity. DL algorithms used for groundwater potential mapping 

in previous studies include convolutional neural network (CNN), long short-term memory 

(LSTM), deep learning neural network (DLNN), deep learning tree (DLT), deep boosting (DB), 

and recurrent neural network (RNN). From these studies, the AUC values varied from 0.801 to 

0.910 (Chen et al., 2022; Hakim et al., 2022; Moughani et al., 2023; Ragragui et al., 2024). There 

is no universal judgment on the best algorithm for mapping groundwater potential, either DL or 

ML. This arises because ML and DL-based modelling are highly dependent on the characteristics 

of the training data and on how the algorithm processes them.  

Many previous studies have focused on comparing algorithms with pre-defined hyperparameters 

for groundwater potential mapping (Arabameri et al., 2020; Chen et al., 2020; Chen et al., 2022; 

Parasar et al., 2025; Pham et al., 2019). On the other hand, algorithm optimization through hy-

perparameter fine-tuning plays an important role in improving the generalization and robustness 

of models (Seifi & Niaki, 2023). Hyperparameter tuning is essential for controlling the behavior 

of algorithms during the training process, thereby affecting the performance of ML and DL mo-

dels (Wu et al., 2019). The most common techniques used in the hyperparameter tuning process 

in spatial modelling applications are grid search (Kanwar et al., 2025; Lei et al., 2025; Li et al., 

2023; Nguyen et al., 2023; Shams et al., 2024). These techniques are relatively simple, but the 

computational cost increases with the complexity of the search space and the number of hyperpa-

rameters examined. Methods such as the tree-parzen structured estimator (TPE) can reduce this 

computational cost by using a Bayesian-based approach. The hyperparameter tuning process can 

proceed more efficiently (Lai, 2024). However, the use of TPE for hyperparameter optimization 

in spatial modelling applications, particularly for groundwater potential mapping, remains relati-

vely limited, especially in Indonesia. 

Each algorithm has its own weaknesses in performing the prediction process. Performance im-

provements to address these weaknesses, through ensemble learning between single algorithms 

(often referred to as basic learning) (Wang et al., 2024). Several techniques have been developed 

to integrate basic learning methods, namely boosting, bagging, and stacking. Among these three 

ensemble techniques, stacking has outperformed boosting and bagging according to several stu-

dies in various case studies, including for predicting soil moisture, agribusiness product prices, 

landslide susceptibility, and high-frequency trading (Das et al., 2022; Ferrouhi & Bouabdallaoui, 

2024; Ribeiro & Coelho, 2020; Wu & Wang, 2022). The stacking technique is advantageous be-

cause it can identify the strengths and weaknesses of each basic learning model. Stacking learning 

can combine heterogeneous basic learners, which bagging and boosting cannot. Stacking Lear-

ning (SL) is a technique that integrates the output of each base learning tier (tier 1 output) into tier 

2 using meta-learning. Previous research integrates multiple base learning using ensemble lear-

ning techniques such as voting, boosting, and bagging (Lv et al., 2022). Explicit and concurrent 

evaluation of ML, DL, and stacking learning for groundwater potential mapping remains limited, 

especially in Indonesian case studies. The use of AI algorithms for groundwater potential mapping 

in Indonesia in previous studies used RF, SVM, ANN, and XGBoost, with accuracy values va-

rying from 0.58 to 0.978 (Nugroho et al., 2024; Nugroho et al., 2024). Performing DL and stack-

ing, which integrates multiple algorithms, has not yet been conducted in Indonesia. 
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Previous studies using DL and ML algorithms have mainly considered topography, land cover, 

geology, hydrology, and hydrogeology as influence factors for groundwater potential mapping. 

However, to the best of our knowledge, geophysical factors such as the mean shear-wave velocity 

at 30 m depth (vs30) and the complete Bouguer anomaly (CBA) have not been considered in 

studies mapping groundwater potential using ML and DL algorithms. Both parameters have an 

indirect influence on the presence of groundwater.  

There are even studies that interpret groundwater potential from gravity measurements (Alshehri 

& Mohamed, 2023; Handayani et al., 2018). The CBA parameter is a product of the gravity ano-

maly. According to Newton's law, gravitational force is a function of the mass distribution and 

spatial location within and on the surface of the Earth; changes in groundwater accumulation af-

fect the water mass in a region. Thus, the gravity force value affects the presence of groundwater 

in an area. In addition, with the gravity force value, it is possible to interpret the porosity condi-

tions of rock units that affect the groundwater transport system (Rustadi et al., 2022). Vs30 cor-

relates with geological maturity and primary lithology (Meneisy et al., 2023). Vs30 values can be 

used as an indication of fluid saturation levels in a rock layer, particularly in early-stage, uncon-

solidated lithological units (Okay & Özacar, 2023).  

Shear wave velocity provides information related to aquifer characteristics. It can provide infor-

mation related to geological properties such as hydraulic conductivity, permeability, storability, 

and porosity (Khalilidermani & Knez, 2024). Despite CBA and VS30 indirectly affecting ground-

water potential, these two geophysical parameters can enhance the performance of groundwater 

potential prediction. These geophysical factors provide subsurface information that complements 

other parameters. The model can identify groundwater potential characteristics in the study area 

by leveraging hidden geophysical controls, yielding a more reliable model. 

Therefore, to fill gaps in previous research, this study evaluates the implementation and integra-

tion of ML and DL algorithms for mapping groundwater potential in Indonesia, with particular 

focus on the Trenggalek Regency area. In addition, this study employs hyperparameter fine-tuning 

with TPE to optimize model performance. In this modelling, geophysical factors such as CBA 

and Vs30 are considered modelling parameters.  The ML algorithms used are RF and GBDT. 

Meanwhile, the DL algorithms used are 1-D CNN and RNN. The ML and DL algorithms were 

chosen because, based on the literature review, they have high performance and can identify re-

lationships between groundwater influencing factors and the potential presence of complex 

groundwater. There are three schemes for integrating the algorithms: integrating each DL and ML 

algorithm, and combining DL and ML. The integration technique used is stacking with logistic 

regression (LR) as the meta-learner. Therefore, this study will produce seven models that will be 

evaluated for performance using accuracy, Cohen's kappa, Matthews correlation coefficient, and 

receiver operating characteristic (ROC) AUC. This study then compares the performance of the 

nine models to obtain the optimal model for accurately identifying groundwater potential in 

Trenggalek Regency. 

2. Research Methods  

2.1. Study Area 

Trenggalek Regency is one of the regions in East Java Province, Indonesia. Trenggalek is located 

at 111° 23' 31.2” to 111° 50' 48.95” E, and 8° 23' 18.46 " to 7° 53' 18.16’ S. Trenggalek Regency 

experiences hydrometeorological drought disasters that occur annually. There were 123 drought-

related disasters in Trenggalek Regency throughout 2023, highlighting the water-scarcity pro-

blem. The population growth rate of Trenggalek Regency was 0.51% in 2023, in line with the 

increasing dependence on groundwater as a freshwater source, which reached 135,293 m3. There-

fore, a groundwater potential map is urgently needed, as it can help in optimizing the fulfillment 

of clean water needs in Trenggalek Regency. 

Trenggalek Regency has diverse geomorphological conditions. Two-thirds of Trenggalek Re-

gency is mountainous. Trenggalek Regency has elevations ranging from 0 to 1,179 metres above 

sea level. Trenggalek Regency is a tropical region with an average rainfall of 1,879 to 2,756 

mm/year and an average land surface temperature of 24°C to 31°C. The geology of Trenggalek 

Regency is dominated by the Mandalika formation, which is Neogene in age and consists of in-

terbedded volcanic breccia, lava, tuff, and sandstone. 
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Figure 1. Location of Trenggalek Regency and the Distribution of Training Points. 

2.2. Conditioning Factors of Groundwater Potential 

The selection of conditioning factors can affect the quality of groundwater potential modelling 

results. The conditioning factors were determined based on a literature review and data availabi-

lity. This study considered 18 parameters such as TWI, river density (RD), SPI, land cover (LC), 

normalized difference vegetation index (NDVI), annual rainfall (AR), evapotranspiration (ET), 

land surface temperature (LST), atmospheric pressure in the surface (SP), elevation, slope, slope 

aspect, plan curvature (PC), lineament density (LD), geological unit (GU), soil type (ST), com-

plete bouguer anomaly (CBA), and average shear wave velocity to 30m (VS30).  The 18 parame-

ters are classified into six factors: hydrology, land cover, climate, topography, geology, and geo-

physics. Detailed conditioning factor information can be seen in Table 1. 

Table 1. The groundwater potential conditioning factors used in the study are described, and their influence 

on groundwater potential is discussed. 

Factor Parameter Role in Groundwater Potential Source 

Hyrology Topographic Wet-

ness Index 

Control the ability of groundwater infiltration rate in an 

area  

(Senapati & Das, 2021) 

River Density Influence on surface runoff and water infiltration. Hy-
draulic connections can occur between surface water 

and groundwater in areas with high RD, which will af-

fect the groundwater recharge process 

(Abijith et al., 2020) 

Stream Power Index Negative SPI values are easier to retain groundwater (Echogdali et al., 2022) 
Land Cover Land Cover Controls soil moisture level, penetration, and surface 

runoff rate. Therefore, it can directly affect the level of 

groundwater recharge 

(Senapati & Das, 2021) 

NDVI The higher the vegetation density, the greater the 

groundwater potential of the area 

(Senapati & Das, 2021) 

Climate Annual rainfall Main source of groundwater recharge that impacts sur-

face runoff and depends on the duration, volume, and 

intensity of rainfall  

(Ahmed et al., 2020) 

Evapotranspiration Increased ET can shift the proportion of the rainfall as a 

source of groundwater recharge 

(Ghiat et al., 2021) 

Land surface tempe-

rature 

Groundwater quantity decreases when LST increases 

because water will evaporate faster from the soil 

(Silver et al., 2007) 
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Table 2. (Continued). 

Factor Parameter Role in Groundwater Potential Source 
 

Atmospheric pres-

sure at the surface 

SP produces subsurface material compression, thereby 

narrowing rock pores. Therefore, it can influence the 
water absorption capacity of the aquifer  

(Kramer et al., 2023) 

Topographic Elevation Influence the local rainfall frequency and processes. (Berhanu & Hatiye, 

2020) 

Slope Affect the rate of water flow and infiltration in an area. (Maskooni et al., 2020) 

Slope aspect Influence the moisture level and vegetation density in 
an area. 

(Benjmel et al., 2022) 

Plan curvature Curvature affects water flow convergence and diver-

gence, as well as flow acceleration and declination. 

(Al-Abadi et al., 2016) 

Geology Geological Type Rock formation can influence the permeability and po-
rosity characteristics of an aquifer. 

(Muavhi et al., 2022) 

Soil Type Determine permeability in an area. In addition, texture, 

granule size, and soil composition influenced soil water 

content. 

(Rehman et al., 2024) 

Lineament Density It represents secondary porosity and is crucial in regu-

lating the hydrometeorological conditions of ground-

water flow and storage. 

(Berhanu & Hatiye, 

2020) 

Geophysical VS30 VS30 can be used as an indicator of fluid saturation in 

a rock layer, especially in early unconsolidated litholo-

gical units. 

(Rustadi et al., 2022) 

CBA CBA can interpret the porosity conditions of rock units 

that affect the groundwater transport system 

(Okay& Özacar, 2023; 

Khalilidermani & Knez, 

2024) 

There were 1,840 samples used to train the model, consisting of 740 potential points and 740 non-

potential points. The possible points used are spring locations with discharge rates of 10–100 

liters/second. Meanwhile, non-potential points were random points located in GU with low po-

rosity (0.2% - 8%). The distribution of training points can be seen in Figure 1. All parameters 

were resampled in raster format with a spatial resolution of 30m. The details of the data used in 

this study can be seen in Table 3. The data was processed with spatial data processing software to 

produce modelling parameters. The parameters can be shown in Figure 2 and Figure 3. 

Table 3. Summary of data resources and derived parameters required in this study. 

Data Source 
Spatial resolution/ 

scale 
Derivative parameter(s) 

Spring locations Local government of Trenggalek Re-

gency 

1:50,000 Potential class training 

Digital elevation model (DEM) National Geospatial Information 

Agency of Indonesia (well known as 

BIG) 

8m Elevation, Slope, slope as-

pect, TWI, LD, and SPI 

River density BIG 1:25,000 RD 
Land cover BIG 1:25,000 LC 

Landsat-8 imagery United States Geological Survey 

(USGS), which is obtained from the 

Google Earth (GEE) platform 

30 m NDVI 

Annual rainfall  Climate Hazard Group Infrared Preci-

pitation with Station Data (CHIRPS) 

from the GEE catalogue 

0.5 arc degree AR 

MODIS imagery National Aeronautics and Space Admi-
nistration (NASA) from the GEE cata-

logue. 

500 m ET and LST 

Geological unit map Volcanology and Geological Hazard 

Mitigation Center of Indonesia (well 
known as PVMBG) 

1:100,000 GU and non-potential trai-

ning 

Soil type map Local government of Trenggalek Re-

gency 

1:50,000 ST 

Global Gravity Model Plus (GGm-
Plus) Free-air gravity model  

Murray lab 200 m CBA 

SRTM2Gravity terrain correction 

model 

Murray lab 90 m CBA 

VS30 USGS 30 arc seconds Vs30 
ERA5-Land European Center for Medium-Range 

Weather Forecast (ECMWF) 

11 km SP 
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Figure 2. Conditioning Parameters 1 to 9 for Groundwater Potential Mapping; (a) TWI; (b) RD; (c) SPI; (d) 

LC (GL: grass land; LA: lake; FO: forest; FL: field land; PL: plantation; RE: residential; SW: swamp; PF: 

paddy field; SH:shurb; RI: river); (e) NDVI; (f) AR; (g) ET; (h) LST; (i) SP. 
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Figure 3. Conditioning Parameters 10 to 18 for Groundwater Potential Mapping; (a) Elevation; (b) Slope; 

(c) Aspect (F: Flat; N: North; NE: Northeast; E: East; SE: Southeast; S: South; SW: Southwest; W: West; 

N: North); (d) PC; (e) LD; (f) ST (Al: Alluvium; Md: Mediteranian; Li: Litosol; La: Latosol); (g) CBA; (h) 

VS30; (i) GU (AF: Arjosari formation, porosity ±25%-40%; Al: alluvium, ±25%-40%; Alc: Alluvium and 

coastal deposits, ±25%-55%; AM: Argohalangan morphocet, ±0.2%-8%; IR: Intrusive rock, ±0.1%-8%; JF: 

Janten formation, ±25%-40%; MF: Mandalika formation, ±7%-25%; NF: Nampol formation, ±45%-55%; 
OF: Oyo formation, ±25%-40%; SM: Sedudo morphonite, ±0.2%-8%; WF: Wonosari formation, ±0.27%-

4.1%; WuF: Wuni formation, ±48%-52%). 



Forum Geografi, 39(3), 2025; DOI: 10.23917/forgeo.v39i3.12279  

Ummah & Diyono   Page 405   

2.3. Pre-Processing 

This study uses two types of data: discrete and continuous. To ensure data reliability in the mo-

delling process, pre-processing was carried out. Discrete data are transformed into numerical form 

using the one-hot encoding (OHE) technique. OHE transforms each class into a binary vector, 

with 1 if it appears in a particular row and 0 if it does not. The OHE technique can be seen in 

equation 1 (Samuels, 2024). Meanwhile, for numerical data, the Yeo-Johnson transformer (YJT) 

and standard scaler are applied. The YJT is a technique that aims to transform the data distribution 

to near normal (Yeo & Johnson, 2000). On the other hand, the standard scaler or z-score standar-

dization technique is a method to ensure model independence from specific feature scales. The 

standard scaler transforms data to a mean of 0 and a standard deviation of 1 (Demir & Sahin, 

2024). The YJT and standard scaler can be seen in Equations 2 and 3. 

𝑣𝑖[𝑗] =  {
1, 𝑖𝑓 𝑗 = 𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

𝜓(𝑦, 𝜆) =  

{
  
 

  
 
(𝑦 + 1)𝜆 − 1

𝜆
                                (𝜆 ≠ 0, 𝑦 ⩾ 0)

𝑙𝑜𝑔(𝑦 + 1)                                      (𝜆 = 0, 𝑦 ⩾ 0)

−[(−𝑦 + 1)2−𝜆 − 1]

2 − 𝜆
                     (𝜆 ≠ 2, 𝑦 < 0)

− 𝑙𝑜𝑔(−𝑦 + 1)                                (𝜆 = 2, 𝑦 < 0)

 (2) 

𝑍 =  
𝑥 − 𝑥̅

𝜎
 (3) 

Where, 𝑣𝑖[𝑗] Is OHE vector in parameter-I, class j; 𝜓(𝑦, 𝜆) is the result of the YJT transform; 𝑦 

is original value of the parameter; 𝜆 is a constant estimated by maximum likelihood estimation 

(MLE); 𝑍 is a standardized value; 𝑥 is the original value before the standardized value; 𝑥̅ is the 

mean value; and 𝜎 is the standard deviation (Demir & Sahin, 2024; Samuels, 2024; Yeo & John-

son, 2000). 

2.4. Modelling Process 

This study evaluates the use of ML and DL for groundwater potential mapping in Trenggalek 

Regency, Indonesia. In addition to using each algorithm individually, this study used the stacking 

technique to integrate ML and DL models. Each algorithm performed hyperparameter tuning 

using a tree-structured Parzen estimator (TPE). The two ML algorithms used are RF and GBDT. 

RF is an ML algorithm that uses bootstrapping and bagging to form multiple DTs. Each DT is 

constructed with several n-parameters, and n-data are randomly selected. The result of the RF is 

the voting of the results of each single DT (Breiman, 2001). GBDT is a straightforward combina-

tion of DT and gradient descent. GBDT comprises two main processes: boosting and classifica-

tion. These two processes can improve model performance and minimize overfitting through the 

regularization process within sequential steps to iterate on the loss function (Chen et al., 2020). 

Loss function is the difference of prediction and the actual value (Yang et al., 2024).   

 

Figure 4. The Architecture of the DL Model: (a) 1D CNN; (b) RNN. 

CNN and RNN were used as DL algorithms in this study. CNN can solve complex problems and 

consists of three main layers: convolutional layers (CL), pooling layers (PL), and fully connected 

layers (FCL) (Zhang et al., 2022). CL is a convolutional filter (also known as a kernel) where the 

input features expressed by a matrix of dimension N×1×P are convolved with a filter of size 
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n×1×p, where N>n and P>p, resulting in an output feature map. PL is a subsampling technique 

applied to the feature map generated by CL.  After the PL layer, the feature map will be flattened 

and moved to the FCL layer. In this layer, each neuron is connected to all neurons from the pre-

vious hidden layer, so it is called a fully connected (FC) approach (Fang et al., 2020). The overall 

architecture of the CNN used in this study is illustrated in Figure 4(a). RNNs are designed to 

process data sequentially by considering hidden states that capture information about previous 

inputs. RNNs have recurrent connections (Ji et al., 2023), as shown in Figure 4(b). Such connec-

tions allow information to loop within the network. The network memorizes the input information 

of the previous state (t-1) and then applies it to the calculation of the output at state t. The nodes 

between hidden layers are interconnected, and the input to the hidden layer includes not only the 

production of the previous input layer but also the output of the hidden layer from the previous 

state (Mienye et al., 2024). 

This study uses two strategies to optimize the prediction model: hyperparameter optimization for 

each algorithm and stacking. Stacking is a method of successfully integrating different ML or DL 

models (Sikora, 2017). In the stacking model, heterogeneous prediction models are used, where 

the output of all the algorithms is given as input to the meta-model to get a more stable model 

(Khoshkroodi et al., 2024). Logistic regression (LR) is the meta-learner applied in this study, 

which utilizes the maximum likelihood method to discover the 'best fit' association between input 

and output (Sun et al., 2018). 

TPE is the technique used to tune each algorithm's hyperparameters. TPE is a Bayesian technique 

used for optimizing hyperparameters that utilizes a kernel density estimator to model the proba-

bility distribution of hyperparameters using an objective function (Ishii et al., 2023). TPE imitates 

the density distribution function to optimize hyperparameters in both the optimal and worst-case 

settings. The iterative approach is used to select hyperparameters for sampling, evaluate model 

performance, and update probability density functions. The conditional probability theory 𝑝(𝑥|𝑦) 
is used, where 𝑥 is the hyperparameter and 𝑦 is the loss from using that hyperparameter. The first 

step in TPE optimisation is selecting the threshold loss (𝑦∗) given the available data, such as 

based on the median. The formation of probability density functions 𝑙(𝑥) and 𝑔(𝑥) is supported 

by the threshold loss as seen in equation 4  (Rong et al., 2021). Afterwards, other hyperparameter 

combinations are determined by maximizing the likelihood between 𝑙(𝑥) and 𝑔(𝑥) using equation 

5 (Islam et al., 2024). 

𝑝(𝑥|𝑦) =  {
𝑙(𝑥)     𝑖𝑓 𝑦 < 𝑦∗

𝑔(𝑥)  𝑖𝑓 𝑦 > 𝑦∗
 

(4) 

𝑎𝑟𝑔𝑚𝑎𝑥 (
𝑙(𝑥)

𝑔(𝑥)
) 

(5) 

2.5. Model Evaluation and Inspection 

Model evaluation is a validation process for the accuracy and reliability of a prediction model. 

Evaluation in this study was carried out on two datasets, namely training and testing, to determine 

whether each model suffered from overfitting. Model evaluation is carried out using four param-

eters. Model evaluation parameters can be seen in Table 4. Where TP (true positive) is a positive 

class that is predicted positive; FP (false positive) is a negative class that is predicted positive; FN 

(false negative) is a positive class that is predicted negative, and TN (true negative) is a negative 

class that is predicted negative (Stern, 2021; Tharwat, 2018). 

Table 4. Model Evaluation Metrics. 

Metric Equation Range value Best Value 

Accuracy (ACC) 𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

0-1 1 

Matthew’s Coefficient 

Correlation (MCC) 
 

𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

(-1) -1 1 

Cohen’s kappa (CK) 2(𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁)

(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

0-1 1 

ROC-AUC 
∫𝑇𝑃𝑅 𝑑(𝐹𝑃𝑅) 

0-1 1 

Model evaluation was performed using k-fold cross-validation (KFCV). KFCV divides the dataset 

into n-fold. 1/n fold is used to evaluate the model, and the other n-1 fold is used to train the model. 

This research uses five folds. This means the training-to-testing ratio is 80:20. The KFCV tech-

nique is used to detect overfitting by using the t-test with degrees of freedom (df) n-1, which was 

four. Model inspection improves our understanding of how to interpret the model. Two additional 
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approaches to model inspection in this study were permutation feature importance (PFI) and par-

tial dependence plots (PDPs).  

PFI approximates the relative importance of parameters in a predictive model by permuting each 

parameter's values. As accuracy varies significantly, the parameter has an important contribution 

to the model (Altmann et al., 2010). The PDP employs the Shapley additive explanation (SHAP) 

value, which computes the Shapley value for every sample in the dataset. Shapley values offer a 

game-theoretic mechanism for reasonably apportioning the prediction output to individual input 

features. SHAP was initiated by Shapley, (1953) with game theory. It considers every possible 

combination of parameters in a row of data to calculate the marginal contribution of each para-

meter. This value is calculated for each parameter value. The SHAP value can be calculated using 

equation 6. In this equation, ∅𝑖𝑣(𝑥) is the SHAP value for feature i with the prediction model 

v(x); 𝑆 is the feature subset dataset; F is the entire feature; 𝑆 ⊆ 𝐹/{𝑖} is a subset of feature F 

without considering parameter-I; 𝑣(𝑥𝑆∪{𝑖}) is the prediction output with subset S considering fea-

ture-i; and 𝑣(𝑋𝑆) is the prediction output with subset S without considering i-feature (Lundberg 

& Lee, 2017). 

∅𝑖𝑣(𝑥) = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
[𝑣(𝑥𝑆∪{𝑖})

𝑆⊆𝐹/{𝑖}

− 𝑣(𝑋𝑆)] 

(6) 

3. Results and Discussion 

3.1. Hyperparameter Optimization Result 

Hyperparameter tuning is one of the crucial steps of constructing an optimal prediction model 

(Jafari et al., 2023). TPE reduces computational cost by selecting the most appropriate pair using 

a Bayesian-based method, rather than evaluating all pairs of hyperparameters. The optimum hy-

perparameter configurations for each algorithm are presented in Table 5. In this study, the number 

of iterations is limited to 100 trials, with test-set accuracy as the objective value. Although there 

is no universal judgment on the number of trials that ensures maximum accuracy or convergence, 

several studies have used a setting of 100 trials and achieved convergent results (Fan et al., 2022; 

Kilic et al., 2024; Zhao et al., 2025). 

Table 5. Optimization Result of the Hyperparameter for Each Algorithm Using TPE. 

Algorithm Hyperparameter 
Search spaces Optimal 

value Range Step Distribution 

RF Max depth each DT [1,32] 1 Uniform 5 

 
Max random feature for each 
DT 

[‘sqrt’, ‘log2’, ‘None’] - Choice ‘sqrt’ 

 Min samples each leaf [1,10] 1 Uniform 9 

 Min samples can be split [2,10] 1 Uniform 9 

 Number of DT [100, 2,000] 100 Uniform 1,500 
GBDT Number of boosting [100, 2,000] 100 Uniform 100 

 
Max feature for best split con-

sideration 
[‘sqrt’, ‘log2’, ‘None’] - Choice None 

 Max depth each DT [1,32] 1 Uniform 13 

 
Min samples make the internal 

node 
[2,10] 1 Uniform 4 

 Min samples each leaf [1,10] 1 Uniform 6 

 Learning rate [0.07,0.08] - Choice 0.07 
 Number of subsamples [0.5,0.6] - Choice 0.6 

RNN 
Number of recurrent network 

layers (RNL) 
[1,5] 1 Uniform 3 

 
Number of neurons in each 
RNL 

[50,150] 50 Uniform 150 

 
Activation function in the out-

put layer 
[‘sigmoid’, ‘softmax’] - Choice ‘softmax’ 

 Optimizer [‘Adam’, ‘Adamax’] - Choice ‘Adam’ 

CNN 
Activation function in output 

layer 
[‘sigmoid’, ‘softmax’] - Choice ‘Sigmoid’ 

 Number of FCL [1,6] 1 Uniform 4 

 Number of CL [1,4] 1 Uniform 2 
 Number of neurons each FCL [64, 1,024] 2 Quniform 1,024 

 Optimizer [‘Adam’, ‘Adamax’] - Choice ‘Adam’ 
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Figure 5. The TPE Optimization Objective Value in the Trial Process of Four Basic Learning Models. 

Optimal hyperparameter optimization using TPE can be visualized in a line diagram, as shown in 

Figure 5. Figure 5 illustrates the relationship between trial n and the objective value. According 

to the figure, the RF, CNN, and GBDT algorithms have an accuracy of more than 0.9 at the initial 

state or trial to 0. Meanwhile, the RNN algorithm has an accuracy of 0.49 at the initial state. It 

happens because, in the initial state, the hyperparameter configuration is randomly selected. The 

best trial or convergence conditions for the RF, GBDT, CNN, and RNN algorithms are 4, 84, 25, 

and 86, respectively. The highest objective values in the RF, GBDT, CNN, and RNN algorithms 

are 0.952, 0.962, 0.962, and 0.945, respectively. Overall, GBDT and CNN have the highest ob-

jective values, but CNN finds convergent conditions earlier than GBDT. While it has a very low 

aim value at the initial state, the RNN algorithm experiences a drastic increase in the third trial. 

3.2. Groundwater Potential Map: Each Model 

Groundwater potential maps are generated by applying each prediction model to pre-processed 

parameter data, including categorical data encoding, transformation, and standardization for nu-

merical data. There are seven prediction models generated in this study, namely RF, GBDT, RNN, 

1D CNN, RF-GBDT stacking, 1D CNN-RNN stacking, and RF-GBDT-RNN-1D CNN stacking. 

The output of the modelling process is the probability of groundwater potential. The range of 

probability values is 0 to 1. The closer the value is to 1, the higher the groundwater potential. 

Meanwhile, the closer the value is to 0, the lower the groundwater potential. The groundwater 

potential probability is classified into five classes: very low (0 - 0.2), low (0.2 - 0.4), medium (0.4 

- 0.6), high (0.6 - 0.8), and very high (0.8 - 1). Equal intervals were used to demonstrate the 

consistency and interpretability of groundwater potential mapping results expressed as continuous 

probability values—equal intervals allowed for an objective comparison of groundwater potential 

class interpretations across prediction models.  

Natural and quantile classification techniques are highly dependent on the distribution of each 

prediction model result, leading to less objective comparative analysis. A few spatial modelling 

studies have used the equal interval technique to facilitate comparisons among models (Bi et al., 

2025; Hossen et al., 2025; Nurwatik et al., 2022; Prasad et al., 2020). The groundwater potential 

map produced in this study can be seen in Figure 6. The map is visualized with graduated colors 

ranging from light blue to dark blue. Light blue represents very low potential, while dark blue 

represents very high potential. Overall, the probability distribution almost has the same pattern 

between prediction models, where high probability is found in the west of the study area. Mean-

while, low probabilities are found in the north, some in the southwest. 

Figure 7 presents the percentage area of each potential class and the percentage of spring locations 

within each class. Each model indicates that the class with the largest area is the low class, with 

an area of 22.32% to 31.29%. The very low class is the smallest area, except for the RF model. 

The very low class has an area percentage ranging from 12.57% to 17.66%. For the RF model, 

medium is the smallest-area potential class, with 16.03%. The percentage of potential points ought 

to be related in a direct relationship to the groundwater potential class. The lowest potential class 

has the least percentage of points at 4.05%, and the highest percentage is in the very high class at 

38.11%. Most models show an inverse trend between the low and medium classes, with more 

potential points in the class of low potential. However, in general all models showed that the class 

of very high potential contained the most significant proportion of potential points.  
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Figure 6. Groundwater Potential Maps Generated from Seven AI-based Algorithms: (a) RF; (b) GBDT; (c) 

CNN; (d) RNN; (e) RF-GBDT; (f) RNN-CNN; (g) RF-GBDT-RNN-CNN. 

 

Figure 7. Area Percentages (Shown by Bar Chart) and Spring-Location Percentages (Shown by Line Chart) 

by Potential Class. 

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

RF GBDT CNN RNN RF-GBDT RNN-CNN RF-GBDT-RNN-CNN

S
p

r
in

g
  

L
o
c
a

ti
o
n

P
e
r
c
e
n

ta
g
e

A
r
e
a
 p

e
r
c
e
n

ta
g
e

Very-low low Medium High Very-high Very-low Low Medium High Very-high



Forum Geografi, 39(3), 2025; DOI: 10.23917/forgeo.v39i3.12279  

Ummah & Diyono   Page 410   

3.3. Model Performance 

The predictive model that has been established was evaluated through the KFCV method and 

utilized the ACC, MCC, CK, and ROC-AUC assessment metrics.  The evaluation results are re-

presented through the average value and standard deviation. Standard deviation can be used to 

quantify the robustness of each metric across the five cross-validation iterations. The results are 

shown in Table 6. A low standard deviation for each metric indicates stable performance across 

all folding schemes. Overall, all models achieved high prediction accuracy (ACC > 0.9; MCC and 

CK > 0.85). The GBDT algorithm demonstrated better consistency and stability than other single 

algorithms, as evidenced by its lower performance variance. GBDT, which iterates on bias values, 

can produce more stable prediction models with the best performance. Although both are built on 

DT, GBDT is superior to RF because it minimizes prediction variance while placing greater em-

phasis on bias. However, the performance of GBDT and RF is not significantly different, with 

only a 0.01 difference on several parameters, and GBDT is relatively more stable than RF. The 

bagging technique, which randomly selects features, makes RF less stable than the boosting tech-

nique used in GBDT. 

Table 6. Metric Evaluations Using KFCV and P-Value (PV) Results of the T-test Between the Training and 

Testing Datasets for Each Model. 

Model 
Training Testing PV 

Acc MCC CK Acc MCC CK Acc MCC CK 

RF 0.950 ± 0.002 0.901 ± 0.004 0.900 ± 0.004 0.938 ± 0.019 0.877 ± 0.038 0.876 ± 0.038 0.244 0.247 0.244 

GBDT 0.950 ± 0.003 0.902 ± 0.006 0.901 ± 0.006 0.938 ± 0.014 0.878 ± 0.028 0.876 ± 0.027 0.170 0.173 0.170 

CNN 0.943 ± 0.005 0.888 ± 0.011 0.886 ± 0.011 0.930 ± 0.013 0.863 ± 0.023 0.859 ± 0.026 0.128 0.122 0.128 
RNN 0.935 ± 0.005 0.877 ± 0.008 0.871 ± 0.009 0.936 ± 0.012 0.878 ± 0.021 0.872 ± 0.024 0.946 0.936 0.945 

RF-GBDT 0.957 ± 0.004 0.915 ± 0.008 0.915 ± 0.008 0.957 ± 0.016 0.915 ± 0.032 0.915 ± 0.032 1.000 0.996 1.000 

CNN-RNN 0.939 ± 0.005 0.915 ± 0.009 0.913 ± 0.010 0.939 ± 0.023 0.883 ± 0.043 0.877 ± 0.046 0.989 0.997 0.989 

RF-GBDT-
CNN-RNN 

0.955 ± 0.003 0.910 ± 0.006 0.909 ± 0.007 0.953 ± 0.014 0.907 ± 0.028 0.906 ± 0.029 0.855 0.865 0.856 

Stacking learning (SL-ML) models that integrate RF and GBDT achieve the best performance 

and generalization on the test data, thereby confirming the safe and beneficial combination of the 

two algorithms. The SL-ML technique outperformed because it complemented the weaknesses of 

each weak learner. The SL technique reduced the bias and variance of the prediction values pro-

duced by each weak learner. SL-ML had advantages over SL-DL and the combination of SL-ML-

DL due to the nature of the data used in the groundwater potential prediction model. The DL 

algorithm outperforms ML when there is a highly complex relationship between dependent and 

independent variables. This study confirms that the relationship between dependent and indepen-

dent variables in mapping groundwater potential in the study area is not too complex. DT-based 

algorithms such as RF and GBDT are better at capturing the relationship between dependent and 

independent variables in this case study.  

In the DL group, RNN outperformed CNN. Although RNNs are designed to solve sequential pro-

blems such as time-series prediction, research confirms that RNNs also excel at non-sequential 

data. RNN builds internal hierarchical relationships among independent variables, enabling it to 

capture better relationships with dependent variables in the dataset used in this study. This tech-

nique outperforms CNN-based convolutional feature extraction in this study. 

Model performance can be visualized using the ROC-AUC curve, which is shown in Figure 8. 

Several models show an AUC value of 1.00 (perfect) on training data, but decrease to 0.98–0.99 

on testing data. These models are RF, GBDT, and SL-ML. An ROC-AUC value of 1.00 is stan-

dard in ensemble models based on decision trees such as RF, GBDT, and SL-ML. The same phe-

nomenon has been observed in several studies using DT-based ensemble models (Jin et al., 2024; 

Ouali et al., 2023; Prasad et al., 2025). However, it should be noted that the decreases are not 

significant, with the resulting gap ranging from 0.02 to 0.01. This phenomenon shows that pre-

diction models can learn the relationship between dependent and independent variables well 

enough to generalize new data (testing) effectively. The lowest AUC in the training dataset is for 

RNN, at 0.97. The highest AUC value in the testing dataset is the stack ML model (0.99). The 

other models have an AUC value of 0.98. In general, for every model included: DL, DL-ML, 

GBDT, RNN, CNN, and Stack ML, the AUC values from prediction models using the training 

and testing data are all more than 0.95, which indicates that all the models have excellent perfor-

mance. 

The t-test is performed to assess whether there is a statistically significant difference between the 

two evaluations on the training and testing data. This was done to determine whether the model 

was overfitting. The 𝐻0 set was that the two datasets were not statistically different at a 95% 
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confidence level. The t-test result refers to the 𝑃 − 𝑣𝑎𝑙𝑢𝑒 (PV) which is the probability value to 

support 𝐻0. The 𝐻0 is acceptable if the PV is higher than 0.05. The test results for each model 

were represented in Table 6 with the PV component. Based on the PV value, it can be inferred 

that none of the models overfit because the PV value is greater than 0.05. In general, all the pre-

diction models performed well and did not exhibit overfitting. 

 

Figure 8. ROC-AUC Performance Evaluation of the Seven AI-based Models during Training on the Trai-

ning dataset (a) and the Testing Dataset (b). 

3.4. Model Inspections 

PFI analysis identifies the most influential parameters in each prediction model. The results of the 

PFI analysis were conducted on all four basic learning models, as can be seen in Figure 9Error! 

Reference source not found.. The PFI values are presented in a bar chart, with the x-axis ranging 

from 0 to 1 and the y-axis showing the variable names, sorted in order of highest PFI values. 

According to these results, GU is the most influential parameter in all models with PFI values 

ranging from 0.242 to 0.349. Other parameters that significantly influence the four prediction 

models are CBA, RD, TWI, and slope. There are nine parameters with a PFI value of 0 in the 

RNN model: NDVI, ST, LC, AR, LST, slope aspect, VS30, LD, and PC. Meanwhile, the other 

three models each have one parameter with a PFI value of 0.  

Parameters with PFI 0 in the CNN, RF, and GBDT models are ET, SP, and AR, respectively. 

Visually, other parameters have PFI 0 in the RF and RNN models. However, these parameters 

have values greater than 0 but less than 0.001. A value of 0 in PFI may be due to PFI's limitations 

in explaining agnostic models. PFI only calculates the decrease in accuracy when the value of a 

variable in the test data is randomized to assess its importance. A value of 0 in PFI does not 

represent that the variable has no theoretical effect on the prediction model. However, this condi-

tion occurs when randomizing a particular variable does not decrease the accuracy of the initial 

model. PFI is highly sensitive to variables that are correlated with each other (Kaneko, 2022). If 

two variables are highly correlated, randomizing one variable will not significantly affect the ini-

tial accuracy, because the other variable already captures the values required by the model. For 

instance, LST and NDVI have a correlation value of 0.4 according to the analysis results. This 

yields LST or NDVI PFI values of 0 or near 0. A feature selection process is needed to ensure that 

the variables are not redundant with one another when creating a prediction model. 

To identify the response characteristics of each parameter to the prediction model, this study uses 

PDP. PDP describes the relationship between a parameter's value and its SHAP value. PDP anal-

ysis is only performed on the best basic learning model, namely GBDT. The analysis results can 

be seen in Figure 10Error! Reference source not found.. Continuous parameters are represented 

by a line graph (dark blue line) with an uncertainty polygon (light blue color). The uncertainty 

polygon represents a confidence interval of 95%. Meanwhile, for discrete parameters, it is defined 

as the average SHAP value for each class, shown in a bar chart.  
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Figure 9.  Feature Importance for Each Basic Learning Model. 

The non-linear characteristics of each variable in relation to groundwater potential can be inter-

preted through the PDP. Topographical features such as elevation and slope have a negative rela-

tionship with groundwater potential. This indicates that the higher the surface elevation, the lower 

the groundwater accumulation. The higher the surface, the faster the runoff process in the area, 

resulting in less infiltration. It is supported by the condition that steeper slopes can increase lateral 

flow and reduce the infiltration process. The south-east to north slope direction shows a positive 

SHAP value due to the shorter solar exposure compared to the north to east direction. The duration 

of solar exposure can affect the level of evapotranspiration, resulting in a decrease in groundwater 

quantity in the area. Concave terrain has a positive SHAP value due to its morphological ability 

to accumulate water properly. 
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Figure 10. Partial Dependence Plots for GBDT Model Variables (continuous = line with confidence interval, 

categorical = mean SHAP by class). 
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Hydrological conditions such as SPI, TWI, and river density likely have a negative relationship 

with groundwater potential. SPI and TWI are hydrological parameters derived from topographical 

factors. Drainage connectivity is represented by river density. The higher the drainage connecti-

vity and TWI, the greater the potential for surface flow accumulation, thereby increasing the pro-

bability of lateral infiltration phenomena. SPI represents flow strength; theoretically, the higher 

the flow strength, the lower the lateral infiltration. However, the PDP results suggest a different 

interpretation. The higher the SPI value, the higher the groundwater potential. This could occur 

when supported by permeable geological and soil conditions. 

Climatological factors play a significant role in the capability of groundwater recharge and sto-

rage. AR with a range of 2,200–2,400 mm/year has a high SHAP value, whereas above this range, 

the SHAP value decreases significantly. This occurs because high rainfall typically occurs in areas 

with high topography and is often associated with steep slopes. This condition results in low in-

filtration rates despite high recharge potential due to high runoff processes. ET shows a negative 

correlation with SHAP values, meaning that higher ET is associated with greater potential for 

groundwater, surface water, and vegetation water loss. LST negatively correlates with SHAP, but 

SHAP values are highest when LST values are too. It is possible that in high-temperature areas, 

supported by high groundwater runoff (basin areas), with permeable geological conditions. SP 

negatively correlates with SHAP values, because higher atmospheric pressure can reduce porosity 

by narrowing the inter-rock gaps beneath. 

Land cover and vegetation conditions influence the characteristics of groundwater dynamics. The 

NDVI parameter is positively associated with groundwater potential. This supports the statement 

that areas with high vegetation can increase the infiltration process. The type of land cover with 

the highest SHAP value is residential. Residential areas may reduce infiltration capacity. Howe-

ver, this can be supported by geological conditions with high permeability and recharge potential. 

Subsurface conditions greatly influence groundwater transport systems. In the GU parameters, it 

has the highest range of SHAP values compared to other parameters. The negative SHAP value 

in GU is obtained by the GU class with low porosity, namely 0% - 8%. Meanwhile, positive SHAP 

values are obtained by the GU class with a high porosity of 25% to 55%. The soil type parameter 

in all classes has a negative SHAP value. The lowest negative value is Latosol, which has a low 

permeability value of less than 0.13 cm/hour. LD has a negative association with the SHAP value 

because sloping areas (where lienaments are rare) reduce the runoff rate, resulting in a positive 

effect on groundwater recharge. 

Both CBA and VS30 geophysical properties are positively associated with groundwater potential. 

This condition indicates that the higher the rock density, the higher the groundwater potential in 

the study area. This may occur because volcanic influences dominate the study area. The Manda-

lika geological formation dominates the study area. This formation has rock types with medium 

to high density but is prone to fracturing. The presence of these fractures allows surface water to 

be transported into groundwater.     

3.5. Discussions 

This study implemented AI-based algorithms for groundwater potential mapping. The utilization 

of AI-based algorithms can improve the accuracy and objectivity of groundwater potential map-

ping. RF and GBDT algorithms represent ML in this study. Meanwhile, RNN and CNN represent 

the DL algorithm. The integration of ML, DL, and ML-DL algorithms is carried out to optimize 

the prediction model with the SL approach with LR as meta-learning. Utilized 18 parameters, all 

prediction models performed well with ACC>0.90; CK>0.85; and MCC>0.85. An interesting fin-

ding on the performance of the prediction models was that by applying SL to integrate the algo-

rithms, they can improve 2.04% to 4.45% in ML stacking, 0.44% to 2.32% in DL stacking, and 

1.18% to 5.47% in ML-DL stacking compared to the performance of every single algorithm. The 

application of stacking techniques has been demonstrated to decrease the bias and variance of 

prediction outcomes significantly (Lu et al., 2023). 

Another important finding is that the CBA parameter, which is rarely used in modelling ground-

water potential, shows a significant influence on all models in this study. Values of CBA variation 

represent lateral density characteristics of lithological units (Zaenudin et al., 2020). The most 

influential variable in each model is GU. Rock characteristics such as porosity affect the absorp-

tion rate of surface water into groundwater. The GU variable, as the variable with the highest 

relative contribution, aligns with research by Bai et al. (2022), which had a relative contribution 

value of 0.95. Research by Nugroho et al. (2024), GU is in the second-highest position with a 

relative contribution rate of 0.16. However, other studies produced the opposite condition, where 



Forum Geografi, 39(3), 2025; DOI: 10.23917/forgeo.v39i3.12279  

Ummah & Diyono   Page 415   

the GU parameter had less effect on the prediction model, for example, in a study by Aslam et al. 

(2025), where GU was in the last position in the relative contribution level of the prediction model, 

with a value of 0.15. The less influential parameters in this study are mainly climatological factors; 

for instance, in the GBDT model, AR has the lowest PFI value, SP is the lowest PI in the RF 

model, and ET is the lowest PFI in the CNN model. This condition aligned with research by Hasan 

et al. (2025)where climatological factors such as rainfall had the lowest relative contribution, at 

0.89%. The rainfall variable in the study by Prasad et al. (2020) was also lacking in significant 

influence in predicting groundwater potential with a contribution value of 10%. However, studies 

by Aslam et al. (2025) and Bai et al. (2022) had different results, where rainfall had a significant 

influence on the prediction model. This indicates that each case study has its own characteristics 

in indicating the potential presence of groundwater. 

Compared to previous similar studies using a hybrid algorithm integration approach and AI for 

groundwater potential mapping (Arabameri et al., 2020; Chen et al., 2020; Chen et al., 2022; 

Parasar et al., 2025; Pham et al., 2019), this study has advantages in performance optimization 

through hyperparameter tuning and stacking techniques. Both techniques can optimize the perfor-

mance of the prediction model, resulting in good and stable evaluation values during cross-vali-

dation. In addition, this study also uses modelling parameters that are rarely used in similar stu-

dies, namely CBA and VS30. Both parameters have been proven to contribute significantly to 

modelling using AI-based algorithms through PFI values. Modelling parameters used in this study 

not only utilize surface phenomena but also subsurface phenomena through parameters on geo-

logical and geophysical factors. Hence, the model is more reliable and applicable for decision-

making purposes related to freshwater resource management. 

This study can provide implications for depicting areas lacking access to groundwater potential 

in Trenggalek Regency. All models indicate that the study area is dominated by low potential. 

Some parts of the area, however, have high potential. This information can be leveraged for deci-

sion-making in providing equitable access to freshwater resources in Trenggalek Regency during 

such emergency conditions as drought. The primary contribution of this study is to explore the 

ML, DL, and SL integration algorithms for groundwater potential. Moreover, this study bridges 

the black-box problem of the prediction model by applying PFI and PDP. Therefore, it is impor-

tant to make the model more interpretable. The limitation of this study is not conducting feature 

selection, which may improve the performance of the prediction model and increase its effec-

tiveness due to reduced computational cost. Further exploration of AI-based algorithms and other 

parameters is recommended, as the best prediction model in this study may not necessarily per-

form the following when applied to other study areas due to differences in geological and geo-

morphological characteristics. 

4. Conclusion 

This study implemented and evaluated AI algorithm-based prediction models. This study utilizes 

two ML algorithms, namely RF and GBDT, two DL algorithms, namely RNN and CNN, an SL 

ML algorithm, an SL DL algorithm, and an SL ML-DL algorithm. Based on ACC, MCC, CK, 

and ROC-AUC, the SL ML model has the best performance. The mean evaluation values of the 

SL-ML model in ACC, MCC, CK, and AUC are 0.957, 0.915, 0.915, and 0.99, respectively. Ne-

vertheless, all prediction models performed very well with ACC>0.90, MCC>0.85, CK>0.85, and 

AUC>0.95. According to the PFI value, GU was a parameter with the highest contribution to all 

prediction models. GU PFI values for the RF, GBDT, CNN, RNN, and GBDT models are 0.349, 

0.300, 0.242, and 0.294, respectively. All prediction models indicate that Trenggalek Regency 

was dominated by the low-potential class, ranging from 22.32% to 31.29%. Based on this infor-

mation, the government can serve as a basis for the sustainable management of clean water re-

sources. In addition, this information will help reduce the cost of locating well drilling sites to 

meet the supply demands of various sectors. 

Future research should consider validating groundwater prediction models derived from AI-based 

algorithms using ground-based data, such as geoelectric surveys. Geoelectric surveys can be con-

ducted across multiple study areas, including low- and high-potential zones. By validating these 

models, the resulting predictions become more reliable for subsequent policy application. Addi-

tionally, feature selection can reduce redundancy in modelling parameters and provide an efficient 

process, leading to improved predictive model performance. The use of higher-resolution data is 

highly recommended to produce models suitable for more detailed regional planning. Exploration 

of variables affecting groundwater potential and various other algorithms is necessary. Testing 

different algorithms is essential to obtain optimal groundwater potential prediction models for 

other case studies with different geological and topographical conditions. 
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