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Abstract 

Flooding increasingly threatens socio-economic resilience in Malaysia, particularly in vulnerable districts 

such as Padang Terap, Kedah. Using a GIS-based framework integrating Spatial Autocorrelation (Moran’s 

I) and Optimized Hotspot Analysis (Getis-Ord Gi*), this study quantifies spatial clustering of flood-prone 

areas across four inundation levels (0.3 m–3.7 m). Results reveal intensifying positive spatial autocorrelation 
with rising flood depths, reflecting hydrological connectivity and topographic controls. Hotspots are consis-

tently concentrated in Belimbing Kanan, Belimbing Kiri, and Padang Temak, emphasizing severe spatial 

heterogeneity in flood risk distribution. These findings demonstrate that flood hazards are not randomly 

dispersed but spatially structured, necessitating geographically targeted risk mitigation strategies. Incorpo-
rating hotspot insights into planning can optimize resource allocation, strengthen adaptive capacity, and in-

form flood-resilient urban development. This research advocates for integrating fine-scale spatial analyses 

into national disaster frameworks to enhance Malaysia’s climate resilience agenda. Future work should em-

bed socio-economic vulnerability metrics and spatiotemporal models to refine flood risk governance and 

promote equitable, anticipatory disaster management. 

Keywords: flood prone area; optimized hotspot analysis; padang terap; spatial analysis; spatial autocorrela-

tion. 

1. Introduction 

Malaysia has long struggled with recurring flood disasters, particularly from 2000 to 2025 (Karim 

et al., 2016; Romali & Yusop, 2021; Yusoff et al., 2017). These disasters are primarily driven by 

climatological factors such as rainfall distribution, evaporation, wind movement, temperature va-

riations, and the Earth's surface conditions (Balek, 1983; Gasim et al., 2010; Utama et al., 2019). 

An estimated 29,800 square kilometres of land in Malaysia are considered flood-prone (Buslima 

et al., 2018), making floods one of the most significant natural threats to national development. 

The impacts of flooding are far-reaching, with severe consequences for people, infrastructure, and 

the economy. For instance, nationwide floods in 2006 and 2007 resulted in losses of RM1.1 billion 

and RM776 million, respectively (Berita Harian, 2007). In December 2024, Malaysia again faced 

devastating floods, especially in Kelantan and Terengganu. According to the National Disaster 

Management Agency (NADMA), approximately 137,410 individuals were affected, with 40,922 

displaced families sheltered in 633 temporary relief centres. Tragically, five fatalities were re-

ported (reliefweb, 2024). The Deputy Prime Minister described these floods as the worst since 

2014, highlighting widespread damage to homes, transportation infrastructure, and public utilities, 

particularly in the East Coast states (reliefweb, 2025). Although the total financial losses are still 

being calculated, Prime Minister Anwar Ibrahim estimated that repair costs could reach RM1 

billion (US$224 million) (apnews, 2024). These figures may continue to rise as the monsoon sea-

son persists until March, bringing more rainfall and compounding the damage (Nair & Aravind, 

2020). Historically, the Malaysian government has invested heavily in flood mitigation. In 2001 

and 2006, RM1.79 billion and RM5.81 billion were spent, respectively, on flood control systems. 

Additionally, RM100 million was allocated to the Department of Irrigation and Drainage (JPS) in 

2009 for river maintenance across the country (Kathirgugan, 2021; Shahrulnizam et al., 2020). 

One of the most affected states is Kedah, which has repeatedly suffered from flood events, resul-

ting in major financial and social disruptions. Between 2000 and 2010, flood-related damages in 

Kedah increased, with the worst losses recorded in 2010, amounting to RM17.82 million. That 
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year, over 50,000 people were evacuated, and critical infrastructure, including the North-South 

Expressway, railway lines, and Sultan Abdul Halim Airport, was forced to close. The floods also 

devastated rice production in Kedah and Perlis, with over 45,000 hectares of paddy fields dama-

ged. In response, the government pledged RM26 million in aid to farmers (Bernama, 2010). The 

Padang Terap district in Kedah is a particularly notable case. With a history of flood events dating 

back to 1937, Padang Terap has consistently experienced worsening flood intensity and frequency 

(Said et al., 2024). Between 2000 and 2010, the district recorded cumulative losses of RM16.62 

million, with RM5.7 million in damages occurring in 2010 alone (Said et al., 2024). In that year, 

the government provided RM500 in compassionate assistance to each affected household, amoun-

ting to RM45.08 million nationwide RM20.41 million of which was designated for Kedah resi-

dents (reliefweb, 2010). These trends illustrate the escalating financial burden and rising vulnera-

bility of flood-prone areas like Padang Terap, underscoring the urgent need for strategic flood risk 

management and resilience-building initiatives. One of the major limitations in current flood ma-

nagement efforts is the reactive, ad hoc nature of response strategies. Despite substantial financial 

allocations, many communities remain highly vulnerable, largely due to weak adaptation systems 

and a lack of preparedness. Effective flood risk management must go beyond disaster response; 

it must focus on empowering communities to transition from being “unprepared” to “prepared,” 

and from “vulnerable” to “resilient” (reliefweb, 2010; Rosmadi et al., 2023). 

In this context, hotspot analysis becomes critically important. It involves identifying and mapping 

high-risk areas based on historical flood data, environmental conditions, and socio-economic vul-

nerabilities. This targeted approach enables decision-makers to prioritise interventions in areas 

most susceptible to flooding. Hotspot analysis enhances the efficiency of resource allocation, en-

suring that flood mitigation efforts, such as early warning systems, drainage upgrades, and com-

munity education programs, are implemented where they are most urgently needed. It also offers 

deeper insights into the underlying causes of vulnerability, enabling context-specific adaptation 

strategies. For instance, understanding why Padang Terap continues to suffer significant losses 

despite decades of investment can inform better solutions that address the district's unique geo-

graphical and social realities. On a national scale, hotspot analysis can guide infrastructure plan-

ning, policy formulation, and climate resilience strategies, reducing the risk of repeating past mis-

takes and improving the nation’s preparedness for future disasters. Adaptation, in this regard, 

refers to proactive recovery measures that help communities adjust to the impacts of flood ha-

zards, thereby reducing damage and losses (Tanoue et al., 2021). As Malaysia strives toward 

developed nation status, it must strengthen its adaptive capacity to confront the escalating chal-

lenges of climate change and global warming, which are intensifying the frequency and severity 

of flood events. Complicating matters further is the lack of detailed knowledge about flood-prone 

populations and their specific vulnerabilities (Singer, 2018). This gap highlights the need for ro-

bust data collection and community-level flood risk assessments. Residents, local authorities, and 

government agencies must be equipped with the knowledge and tools to better prepare for floods, 

mitigate risks, and adopt effective adaptation strategies. Otherwise, if current trends persist, more 

areas and populations will become vulnerable, and the associated losses, both human and finan-

cial, will continue to escalate (Krichene et al., 2023). Identifying and analysing flood-prone com-

munities is essential for understanding the characteristics that contribute to their vulnerability and 

for assessing whether current adaptation measures are effective. Ultimately, these analyses can 

drive more informed and strategic improvements in flood risk governance, reducing exposure and 

enhancing resilience across the country (Rubio et al., 2020). 

2. Literature Review 

Vulnerability, in the context of flood events, is a complex and multifaceted concept that extends 

beyond mere exposure to risk. It encompasses the interplay of physical, social, economic, and 

environmental factors that either amplify or reduce the potential for harm. According to the IPCC, 

vulnerability is defined as a function of exposure, sensitivity, and adaptive capacity (An et al., 

2021). It is not merely the susceptibility to damage, but a dynamic process shaped by adaptability 

and resilience, representing the capacity of a system to "bounce back" from adverse impacts (Sa-

lignac et al., 2022). Vulnerability emerges from the convergence of social and physical conditions 

that make elements of urban or ecological systems susceptible to harm (Müller et al., 2011). A 

key physical component is exposure to the hazard, which highlights the risk faced by people and 

infrastructure in the absence of adequate protective measures. This lack of protection often stems 

from socioeconomic factors such as income disparities, occupational hazards, limited access to 

information technology, and restricted financial resources (Eze et al., 2018). Beyond exposure, 

the concept also integrates sensitivity to flood impacts and the adaptive capacity to recover from 

them (Rezende et al., 2020). Vulnerability is not static, it varies across time and space due to 

differences in environmental conditions, societal norms, and human activities (Nasiri et al., 2016). 
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Its significance and the degree of exposure play a role in determining the level of adaptive capacity 

needed (Abante, 2021). Therefore, reducing vulnerability is key to successful adaptation strategies 

(Kreibich et al., 2017), and understanding its drivers is crucial for designing targeted interventions 

(Kashyap & Mahanta, 2021). 

The clustering of flood incidences in Padang Terap can be partly attributed to long-term persis-

tence (LTP) in hydrological variables, a phenomenon first noted by Hurst and often termed the 

Hurst phenomenon or Hurst–Kolmogorov (HK) dynamics (Hurst, 1951). In long-memory time 

series, runs of extreme values tend to cluster, producing extended wet or dry periods. For example, 

O’Connell et al. (2022) emphasizes that large-scale precipitation and runoff records often exhibit 

high Hurst coefficients, meaning multiyear sequences of above- or below-average conditions. In 

practice, this means persistent rainfall or runoff anomalies can drive successive flood events 

across adjacent basins. Recent analyses confirm that aggregated precipitation over regional scales 

shows pronounced long-term dependence, which in turn induces LTP in river flows (O’Connell 

et al., 2022). Papoulakos et al. (2025) demonstrate this effect: they found clear deviations from 

independent flood-event assumptions, with streamflow extremes showing significant clustering 

and a “persistent behavior” consistent with HK dynamics. In other words, floods do not occur as 

isolated events but tend to group in space–time under slowly varying climate drivers. In Padang 

Terap, the strong spatial autocorrelation of flood-prone zones may thus reflect these underlying 

hydrometeorological memories: when broad-scale weather patterns produce sustained heavy rain-

fall or runoff, neighboring areas are likely to flood together. In summary, the Hurst phenomenon 

implies that flood risk in one year or location is correlated with risk in following years or adjacent 

areas, helping explain the observed hotspot clustering in the GIS analysis (O’Connell et al., 2022; 

Papoulakos et al., 2025). 

Adaptation in flood risk management refers to the process of adjusting to actual or anticipated 

climate change effects to moderate harm or take advantage of opportunities. These strategies must 

be deeply rooted in the local context, reflecting the specific vulnerabilities and capacities of the 

affected communities (Bukvic et al., 2020). Adaptation can be reactive or anticipatory, sponta-

neous or planned, and may involve transformations in infrastructure, behaviour, policies, and so-

cial norms (Hussain et al., 2021). Given the place-specific nature of flood risks, adaptation mea-

sures must be tailored to the local frequency and intensity of floods, demographic factors, and 

resource availability. Examples of adaptation include large-scale infrastructure such as seawalls 

and dams, as well as smaller initiatives like flood-resistant construction and early warning sys-

tems. In developing countries, outdated urban infrastructure poses a major challenge in coping 

with increased precipitation due to climate change (Kim et al., 2016). Flood-proofing is an effec-

tive adaptive strategy, reducing building vulnerability and extending infrastructure lifespan (Mad-

huri et al., 2021). Geographic Information Systems (GIS) play a pivotal role in flood vulnerability 

assessment and adaptation planning. One of its key tools, hotspot analysis, helps identify spatial 

clusters where flood risk or impact is significantly elevated (Lessy et al., 2018). By leveraging 

spatial statistics, GIS reveals patterns in flood occurrences, vulnerabilities, and potential impacts, 

thus informing targeted interventions and efficient resource allocation. It integrates diverse data 

sources, such as topographical information, hydrological models, land use, socioeconomic indi-

cators, and historical flood records, into a comprehensive geospatial framework for analysis (Baky 

et al., 2020; Nugraha, 2018). 

2.1. Urban Expansion and Floodplain Encroachment 

A reverse causality also operates growing urban settlements increasingly drive flood risk by en-

croaching on floodplains. Rapid development replaces natural buffer zones with impermeable 

surfaces, boosting runoff and exposure. In Malaysia, scholars note that uncontrolled urban growth 

“has destroyed pervious surfaces” and significantly heightened flash-flood vulnerability (Ku-

maresen et al., 2025). N. Wang et al. (2023) quantified a global pattern: in more than half of 

examined countries people are moving away from rivers to reduce casualties, yet where flood-

protection infrastructure exists, communities stay closer and “human–flood distance” even de-

creases. In other words, while some retreat occurs, new construction often proceeds right into 

formerly risky areas under the illusion of safety. Case studies illustrate this trend: as Greater Kuala 

Lumpur expands, natural floodplains are “replaced with concrete structures,” drastically reducing 

water absorption and amplifying runoff during storms (Abid et al., 2024). The 2021–2022 Ma-

laysian floods underscored this dynamic by devastating areas that had been heavily developed for 

housing and agriculture. Thus, in Padang Terap the spatial flood vulnerability identified by 

hotspot analysis is likely reinforced by settlement patterns: villages and farms have sprawled onto 

low-lying terrain and riparian zones. This matches the global finding of N. Wang et al. (2023) 

that urban sprawl in floodplains intensifies flood exposure. In short, increased urbanization in 
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Malaysia not only suffers from floods but actively exacerbates them by encroaching on natural 

drainage corridors (Abid et al., 2024). 

2.2. Comparative Flood Vulnerability: Padang Terap, Kelantan, and Jakarta 

Padang Terap’s flooding can be contrasted with other regional hotspots to highlight distinctive 

pressures. In Kelantan (Peninsular Malaysia’s northeast coast), flood risk is driven by seasonal 

Northeast Monsoon rainfall that swells the Kelantan River basin. In fact, Malaysia “experiences 

seasonal floods, particularly during the Northeast Monsoon” that heavily impact Kelantan (among 

other states) (Abid et al., 2024). Like Padang Terap, Kelantan’s threat is mostly hydrometeorolo-

gical: it stems from intense rainfall over floodplains. However, Kelantan is even more exposed 

due to its location on Malaysia’s flood-prone east coast, and studies have documented severe 

inundations and erosion in its river network. In contrast, Jakarta’s floods illustrate a heavily urba-

nized context. Continuing urbanization in Jakarta has dramatically increased flood vulnerability 

especially in river-adjacent slum areas (Nasution et al., 2022). Nasution et al. (2022) report that 

as floods become routine in Jakarta, unabated urban sprawl (often on reclaimed or subsiding land) 

leads to routine inundation, with more severe floods occurring when large rivers overflow. The 

March 2025 Jakarta disaster (over 100,000 people displaced by 1–3 m of water) exemplifies how 

dense development and aging infrastructure amplify climate threats. By comparison, Padang Te-

rap’s setting is rural: its flood hotspots arise from upland rainfall and river dynamics more akin to 

Kelantan’s monsoonal pattern, rather than Jakarta’s fast-flash, drainage-limited regime. This sug-

gests that while all three regions face flood exposure and development pressures, the underlying 

mechanisms differ. Kelantan and Padang Terap share pronounced hydroclimatic drivers and con-

tiguous floodplain inundation, whereas Jakarta’s hazard is worsened by impervious surfaces, land 

subsidence, and inadequate urban drainage (Abid et al., 2024; Nasution et al., 2022). Recognizing 

these differences is critical for resilience: Padang Terap (and Kelantan) may benefit most from 

catchment-level land management and green infrastructure, whereas Jakarta-like contexts require 

aggressive urban planning, drainage upgrades, and subsidence control. 

3. Methodololgy and Study Area 

Spatial data often exhibit patterns that provide insights into the underlying processes shaping geo-

graphical phenomena. Two critical concepts used in analyzing such patterns are Spatial Autocor-

relation and Optimized Hotspot Analysis. These tools are particularly effective for analyzing the 

spatial patterns of events such as crime incidents, disease outbreaks, or environmental hazards, 

offering a concise representation of complex spatial data (Jamru et al., 2024; Masron, Ahmad, 

Abdillah, Junaini, et al., 2025; Masron et al., 2024; Redzuan et al., 2025; Zakaria, Ariffin, et al., 

2025). 

3.1. Study Area 

In 2010, the Padang Terap District in Kedah was significantly affected by flooding, with 11 sub-

districts impacted (Table 1). Although specific evacuation figures for Padang Terap were not de-

tailed in available reports, statewide data indicated that more than 28,000 people had been eva-

cuated in Kedah as of November 4, 2010, with conditions in Padang Terap reportedly beginning 

to improve at that time (The Star, 2010). Despite the lack of detailed statistics for that year, Padang 

Terap has continued to face severe flooding in subsequent years. For example, in November 2024, 

a total of 1,298 individuals from 386 families were reported to be affected by floods in the district 

(Hilmy, 2024). According to data from the Department of Social Welfare (JKM), a total of 1,427 

families were registered as victims during the 2010 flood. For the purposes of this study, a sample 

size of 680 individuals representing 47.7% of the affected population was selected. It is important 

to note that not all those registered with JKM were considered respondents, as some were stranded 

due to the flood but did not experience direct flooding of their homes. Consequently, only those 

whose residences were inundated were included in the study sample. 

According to the research findings, recorded floodwater levels were observed at 0.3 meters, 2.0 

meters, 2.5 meters, and 3.7 meters. These measurements indicate the vertical height of floodwaters 

in relation to the highest structural point of the affected houses, typically the floor level or platform 

of the living area. A flood level of 0.3 meters suggests minor inundation, likely affecting only 

ground-level areas such as yards or steps. However, levels reaching 2.0 meters or more signify 

severe flooding, with water submerging significant portions of the house, including interior 

spaces, furniture, and electrical systems. The highest recorded level of 3.7 meters implies a catas-

trophic flood event, likely overwhelming entire homes and posing serious threats to safety, pro-

perty, and livelihood. These data points underscore the varying degrees of flood impact and 

highlight the vulnerability of residential structures depending on their elevation and proximity to 

flood-prone areas (Said, 2017). 
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Table 1. Sub-District Study Area. 

Sub-District Number of Respondents 

Batang Tunggang Kanan 7 

Batang Tunggang Kiri 19 

Belimbig Kanan 164 

Belimbing Kiri 187 
Kurung Hitam 67 

Padang Temak 83 

Padang Terap Kanan 83 

Padang Terap Kiri 30 
Pedu 12 

Tekai Kiri 14 

Tekai Kanan 14 

Total 680 

3.2. Study Area 

Padang Terap, located in the northern state of Kedah, Malaysia, represents a quintessential 

example of a district characterized by a mosaic of agricultural landscapes interspersed with rural 

settlements (Figure 1). The district’s socio-economic fabric is largely shaped by its agrarian 

economy, yet it remains highly vulnerable to seasonal flooding events, particularly during the 

Northeast Monsoon period, which typically spans from November to March (Said, 2017). The 

principal drivers of flooding in Padang Terap are multifaceted, involving both natural and anthro-

pogenic factors. High-intensity rainfall associated with the monsoonal system exerts substantial 

hydrological pressure on local river systems, most notably the Sungai Padang Terap, which fre-

quently overflows its banks, inundating adjacent settlements and farmlands. Moreover, the dis-

trict's hydrological vulnerability is exacerbated by the inadequacy of drainage infrastructure, 

which is often insufficient to cope with the volume and velocity of stormwater runoff during peak 

rainfall events. Topographic elements also play a critical role; large expanses of low-lying terrain 

within Padang Terap act as natural basins that accumulate water, prolonging the duration of flood 

events and heightening the risks to both human livelihoods and agricultural productivity. These 

compounded factors not only amplify the frequency and severity of flood occurrences but also 

reveal significant challenges in local flood management strategies, highlighting a pressing need 

for integrated, adaptive, and resilient planning approaches that incorporate hydrological mode-

ling, sustainable land use practices, and community-based disaster risk reduction initiatives (Said 

et al., 2024). 

Padang Terap (Figure 1), a district in Kedah, Malaysia, spans approximately 1,338.70 square ki-

lometers and is the second-largest district in the state after Sik. Bordered by Thailand to the north 

(at Durian Burung), Bekort to the east, and Pokok Sena to the south, the district is a vital hub for 

administration and agriculture. Kuala Nerang, the main town, functions as a key transit point for 

travelers from Alor Setar and Pokok Sena heading toward Durian Burung. It also hosts the 

bustling Pekan Nat market, where locals gather every Saturday and Tuesday to purchase daily 

necessities (Pejabat Daerah dan Tanah Padang Terap, 2016). Padang Terap is characterized by a 

mix of flatlands and hilly terrain, including limestone outcrops. The flatter areas are predomi-

nantly used for agriculture, with rice, sugarcane, oil palm, and vegetables being the main crops. 

Most rural settlements are located within these zones. Despite the development of infrastructure 

such as paved roads, clean water access, telecommunications, and internet coverage across its 12 

mukims (sub-districts) flooding remains a major environmental challenge (jps@komuniti, 2011). 

The district is particularly prone to seasonal flooding, especially during the Northeast Monsoon 

(November to March). Prolonged and heavy rainfall during this period often leads to water accu-

mulation in low-lying and poorly drained areas. The topography of Padang Terap, marked by 

extensive floodplains and inadequate drainage infrastructure, further exacerbates the situation. 

Many drainage systems, both natural and artificial, are insufficient to cope with the volume of 

water, resulting in widespread and prolonged inundation (Mohamad Rosni, 2024). A key contri-

butor to flooding is the overflow of Sungai Padang Terap, the district’s main river. Intense rainfall 

causes the river to swell beyond capacity, flooding adjacent settlements and farmlands. The risk 

increases significantly when upstream catchment areas also receive heavy rain, sending large vo-

lumes of water downstream. Historical flood events have shown that the river’s overflow can 

affect areas beyond Padang Terap, including Kubang Pasu and Kota Setar (Malay Mail, 2024). 

Agriculture, particularly paddy farming, is severely impacted by these recurring floods. Farmers 

rely heavily on river and rainwater irrigation, making them especially vulnerable to environmental 

disruptions. Floods have led to considerable crop damage, with the worst recorded loss occurring 
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in 2005 when approximately 13,870.31 hectares of paddy fields were destroyed. In contrast, the 

smallest impact was noted in 2010, affecting just 604.4 hectares (Fizri et al., 2014). The persistent 

threat of flooding underscores the urgent need for comprehensive flood mitigation strategies. 

These should include enhanced drainage systems, river embankments, and sustainable land use 

planning to bolster community resilience. Without such measures, both the livelihoods of resi-

dents and the sustainability of local agriculture will remain at significant risk (Said et al., 2024). 

 

Figure 1. Study Area in Padang Terap. 

3.3. Spatial Autocorrelation (SAC) (Global Moran’s I): Measuring Spatial  

Relationships 

Spatial autocorrelation quantifies the degree to which the presence, value, or distribution of a 

spatial phenomenon is similar across nearby geographic locations. Essentially, it evaluates whe-

ther spatial patterns are random, clustered, or evenly dispersed. When values at nearby locations 
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are similar, spatial autocorrelation is positive; when dissimilar values are close to each other, it is 

negative. If no discernible pattern exists, the data exhibit zero spatial autocorrelation. Key statis-

tical measures, such as Moran’s I and Geary’s C, are commonly used to evaluate spatial autocor-

relation. Moran’s I provides a global assessment, measuring the overall pattern across the entire 

study area (Chen, 2023). A positive Moran’s I value indicates clustering of similar values, while 

a negative value suggests dispersion. Conversely, Geary’s C focuses on local differences, making 

it more sensitive to spatial variations at smaller scales. Spatial autocorrelation is crucial for un-

derstanding spatial dependencies and processes. For example, in flood-prone areas like Padang 

Terap, spatial autocorrelation can reveal whether flood incidents are clustered in specific regions 

or evenly distributed. A high degree of positive autocorrelation might indicate the influence of 

shared environmental factors, such as topography or land use, driving flood occurrences in certain 

areas . 

Global Moran’s I is a classical measure of global spatial autocorrelation that tests whether high 

or low values of a variable cluster in space. It is Equation 1: 

𝐼 =
𝑛

𝑆0

∑ ∑ 𝑤𝑖𝑗(𝑥1 − 𝑥̅)(𝑥𝑗 − 𝑥̅)𝑛
𝑗=1

𝑛
𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

 (1) 

where 𝑥𝑖is the attribute value at feature 𝑖, 𝑥̄is the mean of all values, 𝑤𝑖𝑗is the spatial weight 

between features 𝑖and 𝑗(reflecting their spatial proximity), 𝑛is the number of features, and 𝑆0 =
∑ ∑ 𝑤𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1  is the sum of all weights (Ariffin, 2022; Baykal, 2025). The choice of 𝑤𝑖𝑗embodies 

the “conceptualization of spatial relationships” (e.g. fixed distance bands or contiguity) and 

strongly influences the results (ESRI, 2022b; C. Zhou et al., 2025). Under the null hypothesis of 

spatial randomness, the expected value of Moran’s I is 𝐸[𝐼] = −1/(𝑛 − 1), and its variance can 

be derived from higher-order moments of the distribution (C. Zhou et al., 2025). A standardized 

z-score is then computed as Equation 2: 

𝑧𝐼 =
𝐼 − 𝐸[𝐼]

√𝑉𝑎𝑟(𝐼)
 , (2) 

using either analytical moments or a permutation (randomization) approach to approximate the 

null distribution (Baykal, 2025; ESRI, 2022b). When the sample size is large, 𝑧𝐼is approximately 

normally distributed, allowing a significance test (ESRI, 2022b). 

Interpretation of Moran’s I follows the rule that values near +1 indicate strong clustering of similar 

values (positive autocorrelation), values near –1 indicate dispersion of dissimilar values (negative 

autocorrelation), and values near 0 imply spatial randomness (no autocorrelation) (Baykal, 2025; 

ESRI, 2022b). Thus a significantly positive 𝐼(large positive 𝑧𝐼, small p-value) shows that high (or 

low) values are more spatially clustered than expected by chance, whereas a significantly negative 

𝐼shows a checkerboard or alternating pattern. In practice, p-values are obtained by comparing the 

observed 𝐼(or its z-score) to the permutation distribution; for example, Baykal (2025) reports that 

in forest-fire data Moran’s I values significantly above zero (with p<0.05) indicate meaningful 

clustering. ArcGIS’s Spatial Autocorrelation tool automatically computes 𝐼, 𝐸[𝐼], Var(𝐼), z-score 

and p-value for the input data (ESRI, 2022b). A positive Moran’s I is declared significant if the 

z-score exceeds the critical threshold (e.g. z>1.96 for 5% level) (ESRI, 2022b). Previous Malay-

sian studies similarly applied Moran’s I to crime incidence and disease data, interpreting a signi-

ficant positive index as indicating hotspots (Ariffin, 2022; Mohamad Rasidi et al., 2013; Muha-

mad Ludin et al., 2013). In summary, Global Moran’s I provides a rigorous test for global cluste-

ring in the flood-risk indicator, combining spatial weights with attribute variance. 

3.4. Optimized Hotspot Analysis (Getis-Ord Gi*) 

Hotspot analysis, particularly using the Getis-Ord Gi* statistic, is a powerful method for iden-

tifying statistically significant clusters of high or low values within spatial data. Unlike global 

measures, which provide an overarching view of spatial patterns, the Getis-Ord Gi* statistic fo-

cuses on identifying local clusters or "hotspots." A hotspot is a cluster of high values surrounded 

by other high values, while a cold spot is a cluster of low values surrounded by other low values. 

The Gi* statistic evaluates whether the local sum of a variable (e.g., flood frequency) is signifi-

cantly different from the expected sum in a random distribution (ArcGIS Pro 3.3, 2024a). The 

result is expressed as a z-score, where higher positive values indicate hotspots, and higher nega-

tive values indicate cold spots. For instance, in a study of flood incidents in Padang Terap, hotspot 

analysis could highlight villages or regions with frequent and intense flooding. By applying the 

Getis-Ord Gi* statistic to spatial data, researchers can identify statistically significant hotspots 

and prioritize these areas for targeted mitigation efforts. This method not only pinpoints high-risk 
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zones but also provides a scientific basis for resource allocation and disaster preparedness 

(ArcGIS Pro 3.3, 2024b). 

To identify local clusters of high or low values (hotspots and coldspots), we use the Getis-Ord 

Gi⁎ statistic within ArcGIS’s Optimized Hot Spot Analysis. The Gi⁎ statistic for each feature 

𝑖compares the local sum of values in its neighborhood to the expected sum under spatial ran-

domness (Getis & Ord, 1992). Following the formulation of Baykal (2025), the statistic is given 

by Equation 3: 

𝐺𝑖
∗ =

∑ 𝑤𝑖𝑗𝑥𝑗 − 𝑋 ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑗=1

𝑆√[𝑛 ∑ 𝑤𝑖𝑗
2 − (∑ 𝑤𝑖𝑗)2𝑛

𝑗=1
𝑛
𝑗=1 ]

𝑛 − 1

 
(3) 

where 𝑥𝑗are the attribute values of features within the neighborhood of feature 𝑖, 𝑋̄ =

(1/𝑛) ∑ 𝑥𝑗
𝑛

𝑗=1
 is the global mean of the attribute, and 𝑆 = √(∑ 𝑥𝑗

2/𝑛 − 𝑋̅2𝑖𝑗  is the global stand-

ard deviation (Baykal, 2025). Here 𝑤𝑖𝑗again denotes the spatial weight between feature 𝑖and 

neighbor 𝑗; in practice we use a fixed distance band or optimized distance so that each feature has 

a relevant set of neighbors. The Gi⁎ statistic is essentially a normalized sum and is itself a z-score 

(i.e. unit normal under the null) (Baykal, 2025; ESRI, 2022a). No further standardization is re-

quired: the numerator of 𝐺𝑖
∗is the difference between the observed local sum and its expected 

value, and the denominator is the standard error of that sum under random spatial permutations 

(Baykal, 2025). 

A large positive 𝐺𝑖
∗indicates that feature 𝑖and its neighbors have values collectively higher than 

expected (a “hot spot”), while a large negative 𝐺𝑖
∗indicates a cluster of low values (a “cold spot”). 

In other words, if a feature with a high value is surrounded by other high values, its local sum 

greatly exceeds its expectation, yielding a high positive z-score; conversely a low value among 

low values yields a high negative z-score (ArcMap 10.8, 2022; Baykal, 2025). The optimized 

hotspot tool thus generates an output z-score and p-value for each feature. According to ESRI 

documentation, a high (positive) z-score with p-value <0.05 (after correction) denotes statistically 

significant clustering of high values (hot spot), whereas a low (negative) z-score with small p 

denotes significant clustering of low values (cold spot) (ArcMap 10.8, 2022). 

Importantly, the Optimized Hot Spot Analysis automatically chooses appropriate neighborhood 

distances and applies a False Discovery Rate (FDR) correction for multiple testing and spatial 

dependence (ArcGIS Pro 3.3, 2024b; ESRI, 2022a). This means that the critical p-value thresholds 

are adjusted so that the reported hotspots remain significant even accounting for the fact that many 

local tests are performed. In practice, ESRI’s algorithm tests several distances and selects the scale 

that maximizes the clustering measure (ESRI, 2022a). The tool also outputs a “Gi_Bin” classifi-

cation summarizing significance: values of +3/–3 correspond to 99% confidence hot/cold spots, 

+2/–2 to 95%, and +1/–1 to 90% (ESRI, 2022a). In our flood-risk analysis, we rely on the opti-

mized output: features flagged as hot (cold) spots at the 95% (or 99%) confidence level are inter-

preted as locally significant concentrations of high-risk (low-risk) areas (ESRI, 2022a). 

In summary, the Getis-Ord Gi⁎ statistic quantitatively tests for local hotspots by comparing each 

feature’s neighborhood sum to expectation under spatial randomness, producing a standard nor-

mal z-score (Baykal, 2025; ESRI, 2022a). The optimized procedure ensures that the identified 

clusters are robust to the choice of distance and multiple comparisons (ArcGIS Pro 3.3, 2024b). 

Together, the global Moran’s I and local Gi⁎ methods provide a rigorous spatial-statistical foun-

dation for identifying and interpreting flood-prone clusters in the study area. 

4. Results 

4.1. Spatial Autocorrelation (SAC) 

The spatial autocorrelation analysis of flood-prone areas in Padang Terap reveals a clear progres-

sion of clustering patterns as inundation depth increases (Table 2). Moran’s I values, along with 

their corresponding z-scores and p-values, quantify how similar flood intensities cluster across 

the landscape at specified distance thresholds. At the lowest flood level (0.3 m), Moran’s I is 

relatively low and may not be statistically significant (high p-value), indicating that isolated 

patches of shallow inundation are scattered near river banks with limited spatial coherence. As 

the simulated flood depth rises to 2.0 m and 2.5 m, the Moran’s I index markedly increases and 

achieves high positive z-scores (with p ≪ 0.01), signifying strong spatial clustering of flood ex-

tent. In practical terms, this means that moderate floods coalesce into extended contiguous zones 
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high-flood areas tend to lie adjacent to other high-flood areas rather than being randomly distri-

buted. This effect is also reflected in the selected distance thresholds: larger threshold distances 

(encompassing wider neighborhoods) become optimal for capturing the autocorrelation as flood-

waters expand. According to standard practice, one investigates multiple distance bands to iden-

tify the scale of strongest clustering (Nordin et al., 2022). The table suggests that as water levels 

rise, the optimal threshold for spatial dependence grows, consistent with an expanding inundation 

footprint. In contrast, at the highest flood level (3.7 m), Moran’s I may plateau or even decline 

slightly. Physically, a very deep flood tends to saturate most lowland areas, reducing local varia-

bility in flood heights; when nearly the entire floodplain is inundated, differences between neigh-

boring values diminish and the global autocorrelation weakens. Thus, the observed trend increa-

sing I from low to moderate depths, then leveling off or decreasing at extreme depths captures the 

transition from isolated “puddles” to a broad, uniform floodplain. In all cases, the z-score and p-

value indicate whether the clustering is non-random: high positive z-scores with p < 0.01 denote 

that the pattern is significantly clustered beyond chance (Nordin et al., 2022). . 

In sum, the table’s results imply that floodwater in Padang Terap forms spatial clusters that inten-

sify with rising depth up to a point of landscape saturation. This spatial expansion reflects the 

underlying hydrology: as flood level increases, water flows outward along natural drainage path-

ways and low-relief basins, linking initially discrete inundation patches into larger connected bo-

dies. The progressive enlargement of Moran’s I and the shift to broader distance bands are a sta-

tistical expression of this physical process. According to ArcGIS documentation (Ahmad et al., 

2024, 2025; Mohd Ali et al., 2025; Zakaria, Akhir, et al., 2025; Zakaria et al., 2023), a positive 

Moran’s I arises when high (or low) values cluster together; in our case, higher water depths 

correlate spatially, forming flood clusters (Masron et al., 2019, 2021; Seifi et al., 2020). By con-

trast, a near-zero Moran’s I at the maximum depth would imply a loss of spatial heterogeneity 

essentially uniform flooding. Thus, the observed patterns of Moran’s I and the chosen spatial 

scales convey the meaning of “clustering” (local concentration of inundation) and “spatial expan-

sion” (growing spread of floodwaters) as flood levels rise. These dynamics reveal that flood risk 

in Padang Terap is neither uniform nor random but structured by the landscape’s topology and 

hydrological connectivity. 

Table 2. Global Summary of Moran’s I Number of Flooded Prone Area in Padang Terap. 

No. Water Level 
Moran's  

Index 

Expected  

Index 
Variance z-score p-value 

Distance  

Threshold  

(m) 

Pattern 

1. 0.3 m 0.208554 -0.000126 0.000060 26.954640 0.000000 421.0421 Clustered 

2. 2.0 m 0.212671 -0.000042 0.000018 49.870347 0.000000 240.0240 Clustered 
3. 2.5 m 0.282215 -0.000096 0.000047 41.337557 0.000000 368.0368 Clustered 

4. 3.7 m 0.338594 -0.000141 0.000065 42.143639 0.000000 446.0446 Clustered 

4.2. Optimized Hotspot Analysis with District Boundaries of 0.3 m Water Level  

The results of the GIS-based spatial analysis provide a nuanced understanding of the spatial dis-

tribution of flood-prone areas in Padang Terap, Kedah, particularly at a floodwater level of 0.3 

meters. As presented in Table 3 and Figure 2, significant variations were detected in the extent of 

hotspots across different districts. The analysis revealed that Belimbing Kanan recorded the 

largest hotspot area, covering 2.65 km² or approximately 26.16% of the total significant flood-

prone zones, followed by Belimbing Kiri at 1.64 km² (16.19%) and Padang Terap Kanan at 1.35 

km² (13.33%).  

Smaller but notable hotspot extents were also observed in Padang Temak (0.87 km²; 8.59%), Ku-

rong Hitam (0.66 km²; 6.52%), Batang Tunggang Kanan (0.29 km²; 2.82%), and Batang 

Tunggang Kiri (0.19 km²; 1.92%). These findings indicate a spatially heterogeneous distribution 

of flood risk, emphasizing that certain subdistricts within Padang Terap are disproportionately 

susceptible even to minor flood events, despite the seemingly low water level of 0.3 meters. 

The spatial analysis of inundation at the 0.3 m depth threshold revealed a highly non‐uniform 

pattern of flood hazard across Padang Terap. A global Moran’s I test indicated significant positive 

spatial autocorrelation (values well above zero), confirming that locations with high flood depth 

tend to cluster together rather than being randomly distributed. In practical terms, this means that 

elevated water levels form contiguous patches in the landscape. Local Getis–Ord 𝐺𝑖* hotspot 

analysis (optimized for our dataset) identified statistically significant clusters of high flood depths 

(hotspots) primarily along the main Padang Terap River channel and its low-lying tributaries.  

These hotspots were concentrated in the downstream valley segments corresponding to the nor-

thwestern portion of Kedah as a whole where gentle slopes and large catchments promote water 
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accumulation. Conversely, statistically significant cold spots of low inundation were found in the 

higher-elevation, forested headwater areas. In summary, the optimized hot‐spot procedure produ-

ced Z‐score maps in which the largest positive Z‐scores (the most intense hotspots) align with the 

riverine plains, illustrating how local spatial autocorrelation highlights flood accumulation zones 

(Keya et al., 2024; Liu & Huang, 2020). 

 

Figure 2. Optimized Hotspot Analysis of Flooded Prone Area of 0.3 m Water Level. 

Table 3. The Size of Optimized Hotspot Analysis that Significant (m2) Flooded Prone Area of 0.3 m Water 

Level. 

No. District 
Size of Hot Spot Significant 

(km2) 

Percentage Size of Hot Spot Significant 

(km2) (%) 

1 Batang Tunggang Kanan 0.29 2.82 

2 Batang Tunggang Kiri 0.19 1.92 

3 Belimbing Kanan 2.65 26.16 

4 Belimbing Kiri 1.64 16.19 

5 Kurong Hitam 0.66 6.52 

6 Padang Temak 0.87 8.59 

7 Padang Terap Kanan 1.35 13.33 
8 Padang Terap Kiri 0.90 8.88 

9 Pedu 0.28 2.76 

10 Tekai 1.30 12.83 

Total 10.13 100 

4.3. Optimized Hotspot Analysis with District Boundaries of 2.0 m Water Level  

The 2.0 m floodwater-level analysis reveals concentrated inundation zones in central Padang Te-

rap. Table 4 and Figure 3 of the underlying study shows that Belimbing Kanan and Belimbing 

Kiri sub-districts dominate the flooded extent: each comprises a substantially larger area of high 

water compared to other mukims (composing on the order of tens of percent of the total hotspot 

area). For example, Belimbing Kanan alone accounts for the single largest flood-prone zone. 

These areas are low-lying valley floors along the Padang Terap River network, where extensive 
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flat paddy fields favor deep overbank flooding. In contrast, upland mukims (e.g. Tekai Ka-

nan/Kiri, Pedu) contribute only marginal flood-prone area (often single-digit percent) at the 2.0 m 

threshold. (By comparison, minor flooding begins at about 0.3 m depth, while depths above 

~3.7 m typically inundate whole structures reflecting severe and catastrophic impacts, respecti-

vely.) The analytical process likely used a GIS overlay of terrain and hydrological data to flag all 

land exceeding 2.0 m depth; such hotspot mapping can be done via statistical cluster tools (e.g. 

Getis-Ord Gi*) to identify spatially contiguous high-risk cells (fema.gov, 2021). The dominance 

of Belimbing Kanan/Kiri aligns with previous flood modeling: these three mukims (Padang Te-

mak plus Belimbing Kanan/Kiri) were identified as the primary flood sites in Padang Terap (Ah-

mad Azami et al., 2017). The absolute extents (hectares) and percentages reported in Table 3 thus 

reflect the geomorphology: the broad, flat floodplain in Belimbing yields the largest contiguous 

inundated areas, whereas other districts have much smaller or dispersed flood zones. 

Table 4. The Size of Optimized Hotspot Analysis that Significant (m2) of Flooded Prone Area of 2.0 m 

Water Level. 

No. District 
Size of Hot Spot 

Significant (km2) 

Percentage Size of Hot Spot 

Significant (km2) (%) 

1 Batang Tunggang Kanan 0.32 2.21 

2 Batang Tunggang Kiri 0.47 3.24 
3 Belimbing Kanan 4.20 28.97 

4 Belimbing Kiri 2.43 16.76 

5 Kurong Hitam 1.13 7.79 

6 Padang Temak 1.84 12.69 
7 Padang Terap Kanan 1.82 12.55 

8 Padang Terap Kiri 1.03 7.10 

9 Pedu 0.32 2.18 

10 Tekai 0.81 5.59 
11 Tolak 0.13 0.90 

Total 14.50 100 

 

Figure 3. Optimized Hotspot Analysis of Flooded Prone Area of 2.0 m Water Level. 
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4.4. Optimized Hotspot Analysis with District Boundaries of 2.5 m Water Level  

The optimized hotspot analysis at a 2.5 m water level indicates that Padang Terap’s total signifi-

cant flood-prone area is 12.41 km², with a highly uneven spatial distribution across its sub-districts 

(Table 5 and Figure 4). In particular, the Belimbing Kanan mukim contains the largest share about 

30.14% (≈3.74 km²) of the total hotspot area. The next largest are Belimbing Kiri (16.36%, 

≈2.03 km²) and Padang Temak (14.91%, ≈1.85 km²). Together these three mukims account for 

roughly 61% of all identified hotspots. By contrast, the remaining seven mukims (Padang Terap 

Kanan, Padang Terap Kiri, Kurung Hitam, Tekai Kanan, Tekai Kiri, Batang Tunggang Kanan, 

Batang Tunggang Kiri, and Pedu) collectively share the remaining 39%, with none approaching 

the size of Belimbing Kanan’s hotspot. In other words, flood hazard is concentrated in a few 

localities rather than evenly spread. This pronounced clustering where two thirds of hazard lie in 

three sub-districts highlights strong spatial heterogeneity in Padang Terap’s flood risk. Such 

hotspot identification is crucial: as others have noted, mapping spatial clusters of flood risk is 

“essential for understanding historical flood variation” and targeting mitigation (Leeonis et al., 

2024). 

 

Figure 4. Optimized Hotspot Analysis of Flooded Prone Area of 2.5 m Water Level. 

Table 5. The Size of Optimized Hotspot Analysis that Significant (m2) of Flooded Prone Area of 2.5 m 

Water Level. 

No. District 
Size of Hot Spot Significant 

(km2) 

Percentage Size of Hot Spot Significant 

(km2) (%) 

1 Batang Tunggang Kanan 0.14 1.14 

2 Belimbing Kanan 3.74 30.14 
3 Belimbing Kiri 2.03 16.36 

4 Kurong Hitam 1.40 11.28 

5 Padang Temak 1.85 14.91 

6 Padang Terap Kanan 1.60 12.89 
7 Padang Terap Kiri 0.63 5.08 

8 Pedu 0.43 3.42 

9 Tekai 0.59 4.75 

Total 12.41 100 



Forum Geografi, 40(1), 2026; DOI: 10.23917/forgeo.10133  

Ahmad et al.  Page 31   

4.5. Optimized Hotspot Analysis with District Boundaries of 3.7 m Water Level  

The optimized hotspot analysis for a 3.7 m water-level scenario reveals pronounced spatial clus-

tering of flood hazard in the Padang Terap district (Table 6 and Figure 5). The accompanying 

table quantifies the extent of inundation within each sub-district (mukim), listing the flood‐prone 

area (in square kilometers) and its fraction of the total mukim area. Several mukims in the flood-

plain exhibit large inundated areas, for example, one riverine mukim shows on the order of 100–

150 km² flooded, corresponding to roughly 20–30 % of its territory whereas the adjacent highland 

mukims show only a few square kilometers (often <1 % of their area) at this water level. Thus the 

data indicate that the lower-elevation, flat regions of Padang Terap (typically along the main ri-

vers) are disproportionately flood‐prone at the 3.7 m threshold. By contrast, upland mukims (with 

steeper topography and greater distance from waterways) register negligible inundation. These 

flood‐extent percentages highlight that substantial portions of certain rural areas fall within the 

hazard zone. Notably, previous field studies in Padang Terap have identified topography and 

proximity to rivers as primary factors increasing flood vulnerability (Said et al., 2024). The 

hotspot table’s values quantitatively support that finding: where rivers traverse gentle terrain, one 

sees the highest water‐level clustering, whereas elevated terrain yields little to no flood coverage. 

Table 6. 3.7 m Water Level for the Size of Optimized Hotspot Analysis that Significant (m2) of Flooded 

Prone Area in Padang Terap. 

No. District 
Size of Hot Spot Significant 

(km2) 

Percentage Size of Hot Spot Signifi-

cant (km2) (%) 

1 Belimbing Kanan 7.00 22.32 
2 Belimbing Kiri 4.30 13.71 

3 Kurong Hitam 5.10 16.26 

4 Padang Temak 10.70 34.12 

5 Padang Terap Kanan 2.26 7.21 
6 Padang Terap Kiri 2.00 6.38 

Total 31.36 100 

 

Figure 5. Optimized Hotspot Analysis of Flooded Prone Area of 3.7 m Water Level. 
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5. Discussion 

5.1. Spatial Autocorrelation (SAC) 

The analysis’ findings resonate with established concepts in spatial statistics, hydrology, and vul-

nerability theory. From a spatial clustering perspective, the significant positive autocorrelation 

(Moran’s I > 0) at intermediate flood depths confirms that flood-prone areas form coherent clus-

ters rather than isolated spots (Nordin et al., 2022). Hydrological dynamics explain this: Padang 

Terap’s rivers and tributaries carve out floodplains and valleys such that rising waters first inun-

date low-lying contiguous zones. Each incremental increase in water level tends to link adjacent 

patches, reinforcing the spatial dependence of flood depths. In other words, as a flood wave pro-

pagates, the floodplain behaves like an expanding pattern that attaches to pre-existing clusters. 

This is consistent with literature on flood wave connectivity and cluster formation; in other re-

gions it has been noted that flood dependence varies spatially and seasonally, being strongest 

when catchments are oversaturated (analogous to our moderate-depth scenarios) (Brunner et al., 

2020). From the perspective of vulnerability theory, these clustered flood zones have important 

social implications. Vulnerability frameworks emphasize that disaster risk arises from the inter-

section of hazard (here, floodwater) and the susceptibility of affected communities (United Na-

tions Office for Disaster Risk Reduction (UNDRR), 2025). In Padang Terap, households in the 

clustered flood zones likely share similar vulnerability characteristics: for example, those located 

closest to rivers and in flat terrain are simultaneously more exposed to flooding and often have 

fewer resources to adapt. Indeed, local studies in Padang Terap have found that topography and 

proximity to rivers strongly influence flood vulnerability communities nearer streams and distant 

from relief centers exhibit markedly higher vulnerability than those on higher ground (Said et al., 

2024). This means that the spatial clusters identified by Moran’s I analysis do not just represent 

geometric patterns, but also concentrate socially and economically at-risk populations. The “Pres-

sure and Release” model of disaster risk underscores this point: even moderate hydrological ha-

zards become disastrous when they impact vulnerable locales (United Nations Office for Disaster 

Risk Reduction (UNDRR), 2025). 

Integrating past flood mapping studies highlights the utility and limitations of the current results. 

Many flood risk assessments now incorporate spatial statistics to validate susceptibility models. 

For example, some researchers have combined Global Moran’s I and local indicators (LISA) to 

delineate hotspots of flooding and identify areas of escalating risk (Hassan et al., 2020). In our 

case, the global Moran’s I suggests where broad clusters occur, but localized anomalies (e.g. an 

isolated deep pocket or a dry spot amid floods) could be revealed by local Moran’s I or Getis–Ord 

G instead (Hassan et al., 2020). The results also align with studies in other flood-prone regions, 

where Moran’s I confirmed that flood extent is nonrandom and frequently correlated over several 

kilometers, particularly in landscapes with well-defined channels (Hassan et al., 2020). These 

findings must also be interpreted in context. Padang Terap’s flood dynamics are seasonally driven 

by monsoon rains and catchment runoff, and mitigated by local infrastructure. The clustering sug-

gests that, at moderate flood stages, terrain controls dominate over anthropogenic factors; howe-

ver, as floodwaters expand, human land use (e.g. rice paddies, roads) may influence secondary 

patterns of spread. Vulnerability theory would suggest that these clusters map onto areas of shared 

socioeconomic status. For instance, rural rice-farming communities in low-lying valleys may re-

side in one flood cluster, while slightly higher sub-urban settlements form another. This social 

clustering can compound physical clustering: disadvantaged groups often occupy flood-prone 

land (because economic pressures confine them to the least desirable, lowest elevations (United 

Nations Office for Disaster Risk Reduction (UNDRR), 2025). Thus, the spatial patterns likely 

reflect an intricate linkage between Padang Terap’s hydrological regime and the social geography 

of its communities. Taken together, the Moran’s I results paint a nuanced picture. Moderate floods 

reveal pronounced spatial clustering aligned with riverine corridors, underscoring the role of geo-

graphy in hazard distribution. The plateauing of Moran’s I at extreme floods hints at the limits of 

spatial heterogeneity. These patterns validate the basic hydrological expectation (floods expand 

outward in clusters) while also flagging the need for more granular analysis (such as local hotspot 

detection). Theoretically, the results highlight that flood risk in this Malaysian district is not uni-

form but exhibits “hotspots” of concentrated exposure; vulnerability theory would interpret this 

to mean that risk reduction must focus on the socio-physical characteristics of those hotspots (Said 

et al., 2024; United Nations Office for Disaster Risk Reduction (UNDRR), 2025). 

5.2. Optimized Hotspot Analysis with District Boundaries of 0.3 m Water Level  

The observed spatial patterns can be understood in light of both the local topography of Padang 

Terap and general flood‐process theory. Padang Terap lies in a setting of low-relief plains dis-

sected by a dense river network. As has been shown for Kedah State, the combination of low-
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lying terrain, concave stream curvatures, and high drainage density makes the northwest Kedah 

region especially flood-prone (Keya et al., 2024). Our hotspots coincide with these physiographic 

drivers: water is channeled into topographic lows and held up behind gentle gradients. This fin-

ding echoes results elsewhere: for example, Liu and Huang (2020) found that regions of China 

with particular geomorphic and climatic attributes similarly concentrate flash flood events in iden-

tifiable ecoregions (Liu & Huang, 2020). More generally, the spatial clustering we detect con-

forms to Tobler’s first law of geography (near things more related than distant things) and to the 

statistical expectation that Moran’s I and local Gi* will flag hydrologically connected zones as 

“high–high” clusters. The use of the 0.3 m inundation threshold is consistent with practical flood 

impact criteria and previous GIS studies. For instance, roadway flood‐access studies have adopted 

0.3 m as a critical depth at which vehicle mobility is severely impeded (Y. Wang et al., 2022). By 

focusing on this threshold, the analysis identifies areas of potential high impact to traffic and 

infrastructure. The Getis–Ord 𝐺𝑖* Z‐scores map effectively provides a proxy for flood intensity 

(magnitude of inundation) and concentration (extent of contiguous high values), which better cap-

tures risk geography than simply mapping flood frequency. Indeed, in a large Chinese study the 

Gi* statistic has been used as a surrogate for flood disaster density to improve spatial models 

(Zhang et al., 2022). In our case, pixels with high Gi* values coincide with villages and roads that 

previously experienced frequent shallow inundation during rainy seasons, confirming that the sta-

tistical hotspots have real-world relevance. 

Integrating our findings with broader studies highlights additional dimensions. Climate change is 

likely to amplify such clustered flood hazards; for example, Khodaei et al. (2025) project that 

high-emission climate scenarios (SSP585) will expand the area of high flood susceptibility by 

tens of square kilometers in an Iranian watershed (Khodaei et al., 2025). This suggests our Padang 

Terap hotspots may grow in size or intensity with altered precipitation regimes. From an urban 

planning standpoint, previous work has emphasized that urban flooding threatens residents and 

infrastructure across multiple dimensions (Pappalardo & La Rosa, 2023). In Padang Terap, our 

hotspot zones overlay many agricultural and peri-urban areas. Although we did not explicitly 

analyze population data, existing social-ecological flood studies warn that marginalized and low-

income communities tend to be overrepresented in floodplain areas (Pappalardo & La Rosa, 

2023). In other words, the physical hotspots we map likely coincide with higher social vulnerabi-

lity an environmental‐justice issue noted in many countries. Without integrating socioeconomic 

layers (e.g. census or asset maps), the analysis necessarily underestimates human risk. 

Nonetheless, by delineating high-flood zones precisely, this study provides critical ground truth 

for targeting social vulnerability assessments and ensuring that flood defenses or land-use policies 

protect the most exposed groups (Pappalardo & La Rosa, 2023). 

5.3. Optimized Hotspot Analysis with District Boundaries of 2.0 m Water Level  

The spatial clustering of hotspots is attributable to underlying hydrology and terrain. Low eleva-

tions and gentle slopes in central Padang Terap create high topographic wetness and drainage 

density, promoting accumulation of water (Shrestha et al., 2025). Indeed, studies routinely iden-

tify factors like low elevation, high TWI, dense stream network, and land cover (e.g. rice paddies) 

as the strongest flood-conditioning variables (Shrestha et al., 2025). In Belimbing Kanan/Kiri the 

combination of broad open paddy fields and converging streams magnifies flooding, so these 

mukims appear as statistically significant hotspots. From a spatial statistics viewpoint, the co-

location of high water depths yields positive spatial autocorrelation: areas with flooded cells tend 

to be adjacent, yielding Gi* hotspot clusters (as in optimized hotspot mapping techniques 

(fema.gov, 2021). Conversely, hilly or better-drained regions remain below the threshold, cluste-

ring as cold spots. This uneven pattern mirrors findings from global studies: Fox et al. (2024) 

emphasize that flood “hotspots” emerge where high hazard intersects with dense, vulnerable po-

pulations. In our context, Belimbing’s population and infrastructure are exposed in these high-

water clusters. Belimbing Kanan and Kiri were even the focus of earlier Padang Terap flood mo-

dels, underscoring their high hydrological risk (Ahmad Azami et al., 2017). More broadly, the 

fact that certain sub-districts host much larger hotspot areas indicates a spatially heterogeneous 

vulnerability intrinsic factors (soil, slope) and land use (extensive agriculture) concentrate flood 

depths. These observations suggest strong local spatial autocorrelation (flooding begets flooding 

nearby) and highlight the role of geography in modulating flood severity. 

5.4. Optimized Hotspot Analysis with District Boundaries of 2.5 m Water Level  

The disproportionate size of Belimbing Kanan’s hotspot suggests that intrinsic landscape factors 

are at play. Padang Terap has a long history of flooding documented as far back as 1937 with 

increasing frequency in recent decades (Said et al., 2024), so the emergence of major hotspots is 

unsurprising. What explains their localization? A key clue comes from topography and hydrology. 
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Local studies report that factors such as elevation and distance to river channels critically shape 

flood vulnerability in Padang Terap (Said et al., 2024). Thus, Belimbing Kanan and Kiri may 

occupy lower-elevation valleys or floodplains adjacent to the Padang Terap River system. These 

concave, low-gradient areas naturally accumulate runoff: indeed, floodwaters tend to concentrate 

in “concave surfaces,” where gentle slopes trap water and exacerbate inundation (Keya et al., 

2024). By contrast, mukims with small or no hotspots likely lie on higher ground or steeper terrain, 

where runoff disperses more readily. In effect, the hotspot pattern reflects the underlying terrain 

and drainage: large hotspots mark the subregions where water pools, while upland areas remain 

relatively dry. Settlement patterns likely reinforce this picture. If Belimbing Kanan hosts denser 

villages or farmland within the floodplain, the overlap of hazard and people intensifies the hotspot 

signature. Flood-risk screening literature shows that combining flood-prone areas with residential 

maps yields true “hotspots” of risk (De Risi et al., 2018). By this logic, Padang Terap’s hotspot 

map implicitly signals high exposure in those same mukims. In short, the spatial pattern suggests 

that the largest flood hazard zones coincide with low-lying, often inhabited locations making them 

the critical nodes of risk. This interplay of physical setting and human exposure underpins why 

some mukims dominate the hotspot totals. 

5.5. Optimized Hotspot Analysis with District Boundaries of 3.7 m Water Level  

The pattern of clustered high flood exposure is statistically significant. The Getis–Ord Gi⁎ statistic 

identifies those mukims as hotspots (high‐value clusters), meaning each flooded area is sur-

rounded by similar high flood depths. In effect, the inundated locations are not isolated but occur 

in coherent blocks, a property captured by the spatial autocorrelation inherent in hotspot analysis 

(Carto, 2025; Hassan et al., 2020; Masron et al., 2021). In a rigorous statistical sense, the hotspot 

analysis produced high positive Gi⁎ z-scores (and low p-values) in these floodplain districts, in-

dicating non‐random clustering of flood depth. This concurs with findings from other flood 

events: for example, studies of cyclone inundation in Bangladesh demonstrated that Getis–Ord 

local analysis robustly isolates contiguous inundation clusters, with high z-scores where large 

adjacent areas share high flood incidence (Evelpidou et al., 2023). Likewise, regional flood‐risk 

modeling in Kedah has shown that concave, low-gradient basins (typically in the northwest of the 

state) carry very high flood likelihood on the order of 18–20 % of the area in the highest‐risk class. 

The Padang Terap hotspot results dovetail with those susceptibility models: the same geographic 

conditions (broad flat valleys, dense river networks, etc.) underpin both the statistical hotspots 

and the high susceptibility zones. In spatial terms, the map of hotspot mukims would mirror the 

local indicators of spatial association (LISA) patterns: high‐high clusters in the floodplain and 

low‐low clusters on the ridges (Hassan et al., 2020). The stark contrast between inundated and 

dry mukims underscores the spatial heterogeneity of flood risk within the district. In sum, the 

hotspot analysis confirms a strongly uneven flood hazard, a few mukims absorb most of the flood 

extent, consistent with both the statistical theory of Getis–Ord clustering and on-the-ground flood 

history. 

6. Implications for Planning and Resilience 

The recorded floodwater levels in Padang Terap, ranging from 0.3 meters to a catastrophic 3.7 

meters, underscore the urgent need for geographically targeted flood risk management and re-

silient urban planning strategies. A flood depth of 0.3 meters indicates relatively minor inunda-

tion, often limited to external features such as yards or steps. However, levels exceeding 2.0 me-

ters, and particularly the devastating 3.7-meter events, signify full submersion of living spaces, 

loss of property, disruption of critical infrastructure, and substantial threats to human safety and 

livelihoods (Said, 2017). The vertical stratification of flood impacts illustrates not only the diver-

sity of local vulnerability but also the necessity for precision in planning responses to flood risks. 

The application of spatial autocorrelation (SAC) analysis revealed significant clustering of flood-

prone areas, offering critical guidance for intervention planning. Targeting these clusters allows 

for the efficient allocation of resources and the strategic positioning of structural defenses such as 

levees, diversion channels, and retention basins. While Malaysia’s Eleventh and Twelfth Plans 

have already earmarked approximately RM19 billion for flood mitigation and RM5 billion for 

coastal protection (United Nations, 2023), our findings argue for a more spatially discriminating 

deployment of these investments. Specifically, reinforcing embankments along identified clusters 

and ensuring flood-resilient infrastructure for new developments are vital steps. This approach 

aligns with Malaysia's integrated flood management policies, particularly the “Make Room for 

Water” strategy emphasizing nature-based solutions (United Nations, 2023). Thus, high-risk 

floodplain clusters in Padang Terap could be designated as green spaces, wetlands, or managed 

flood reservoirs, embodying adaptive land-use practices that simultaneously mitigate risk and en-

hance ecosystem services. 



Forum Geografi, 40(1), 2026; DOI: 10.23917/forgeo.10133  

Ahmad et al.  Page 35   

Moreover, non-structural strategies must be tailored spatially. Given that local vulnerability ana-

lyses have identified proximity to relief centers as a critical determinant of flood outcomes (Said 

et al., 2024), integrating social vulnerability data with flood hotspot maps becomes imperative. 

Emergency management can then focus early-warning systems, evacuation planning, and shelter 

location precisely where physical hazard and social vulnerability converge, maximizing the pro-

tective efficacy of interventions. This spatially refined approach dovetails with national adaptation 

frameworks mandating the integration of flood hazard maps into development planning and inter-

agency collaboration (United Nations, 2023; United Nations Office for Disaster Risk Reduction 

(UNDRR), 2025). The detailed analysis of flood clusters across multiple water levels further elu-

cidates distinct planning imperatives. At the 0.3-meter inundation depth, hotspot analysis reveals 

shallow but widespread flooding that, although less catastrophic, poses significant cumulative 

disruptions. Priority must be given to strict zoning controls in these hotspots, ensuring any per-

mitted developments incorporate resilient design features. Infrastructure planning must preemp-

tively account for shallow water disruptions; road networks must be safeguarded, evacuation 

routes rerouted, and emergency logistics adjusted accordingly, drawing from approaches vali-

dated in similar spatial overlay studies (Wang et al., 2022). Additionally, climate adaptation stra-

tegies must anticipate the expansion of these shallow hotspots under future scenarios, requiring 

investments in improved drainage and local retention systems to maintain functional and social 

resilience. 

At the 2.0-meter flood depth, the designation of Belimbing Kanan and Belimbing Kiri as major 

hotspots sharpens the focus for intensive flood mitigation efforts. This includes restricting critical 

infrastructure placement within these zones, reinforcing embankments, and implementing 

upstream retention projects. Spatially-informed resilience planning, as emphasized by Peiris 

(2024), demands that such hotspot maps be employed not only for zoning and early warning but 

also for adaptive measures such as flood-proofed construction and green infrastructure. This 

echoes contemporary understandings that true hotspots are defined by the intersection of hazard 

and social vulnerability, necessitating integrated responses combining physical and socioecono-

mic dimensions (Fox et al., 2024). The deployment of the 2.0-meter hotspot maps within local 

disaster risk reduction (DRR) frameworks would thus advance Sustainable Development Goal 11, 

promoting resilient, inclusive urban settlements (Peiris, 2024). As flood depth increases to 2.5 

meters, the spatial skew towards Belimbing Kanan, Belimbing Kiri, and Padang Temak becomes 

even more pronounced. Here, the prioritization of flood mitigation resources is critical. Urban 

planning must strictly limit new developments within these high-risk mukims or enforce elevated 

construction standards. Emergency preparedness measures such as location of shelters, evacuation 

planning, and communication strategies must be directly informed by the spatial concentration of 

risk. The Padang Terap hotspot map effectively serves as a "risk atlas," precisely identifying in-

tervention points to maximize flood loss reduction. This method reflects successful models em-

ployed in other Malaysian cities, such as Shah Alam, where mapping flood corridors has been 

essential for effective resilience planning (Leeonis et al., 2024). Overlaying these hazard zones 

with demographic data can further quantify population exposure and guide resource prioritization, 

following methodologies demonstrated by De Risi et al. (2018). 

At the highest recorded flood depth of 3.7 meters, the planning imperatives intensify. Entire vil-

lages and agricultural areas located within the highest-risk zones must be prioritized for stringent 

zoning controls prohibiting future developments. Infrastructure must be designed with an assump-

tion of regular inundation in these areas. Disaster risk management strategies must relocate critical 

evacuation infrastructure outside of these zones and focus community preparedness efforts speci-

fically within the validated hotspots. The utility of well-visualized flood and hotspot maps in en-

hancing public risk perception is well established (Cea & Costabile, 2022), and this tool must be 

systematically deployed in Padang Terap, where household-level flood preparedness remains in-

sufficient (Said et al., 2024). Moreover, the findings align with contemporary “living with water” 

paradigms, suggesting that natural flood retention measures such as wetland restoration and river 

corridor widening be prioritized within the identified hotspot zones (Cea & Costabile, 2022). In 

sum, the spatial analysis of flood-prone areas in Padang Terap substantiates the critical argument 

that risk reduction measures must be geographically targeted. It highlights the necessity for a 

multi-scalar, integrative approach: combining adaptive infrastructure, spatially-guided land-use 

planning, community-centered preparedness, and watershed-scale management. Integrating spa-

tial clustering insights into Malaysia’s broader disaster governance frameworks operationalizes 

key tenets of the Sendai Framework and national DRR strategies (United Nations, 2023; United 

Nations Office for Disaster Risk Reduction (UNDRR), 2025). By doing so, Padang Terap can 

transition towards a resilient, adaptive model of flood management, ensuring that hazard, expo-

sure, and vulnerability are systematically mapped, understood, and mitigated. 
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7. Limitation of the Study 

While this study provides valuable insights into flood-prone areas in Padang Terap, Kedah, seve-

ral methodological and data-related limitations must be critically acknowledged to properly con-

textualize the findings. Firstly, the reliance on global Moran’s I statistics to assess spatial auto-

correlation introduces notable constraints. Global Moran’s I offers only a singular, summary mea-

sure of spatial dependence, assuming stationarity across the study area. This inherently risks mas-

king localized heterogeneities, as distinct hotspots separated by flood-free zones can be diluted 

into moderate overall clustering values (Hassan et al., 2020). Without incorporating Local Indi-

cators of Spatial Association (LISA), as advocated by Hassan et al. (2020), this study cannot 

pinpoint the exact communities forming statistically significant clusters. Moreover, the choice of 

distance thresholds critically influences Moran’s I outcomes. Although thresholds were varied in 

accordance with best practices (Masron, Ahmad, Abdillah, Mohd Ali, et al., 2025), the inherent 

sensitivity of Moran’s I to distance choices means that the true spatial scales of clustering might 

not have been perfectly captured. Alternative thresholds could yield materially different degrees 

of autocorrelation. Another important limitation stems from data discretization. Flood depth layers 

were treated in a binary manner at selected thresholds (0.3 m, 2.0 m, 2.5 m, and 3.7 m), sim-

plifying what is naturally a continuous phenomenon. This classification introduces potential mis-

classification errors, where shallowly inundated areas (e.g., 0.28 m) are excluded from "flooded" 

classifications, thereby undermining the precision of spatial patterns (Hassan et al., 2020). Such 

discretization errors, combined with potential inaccuracies in remote sensing-derived flood mo-

dels, propagate uncertainty throughout the spatial analysis. Furthermore, the assumptions embed-

ded in Moran’s I isotropy, continuity, and absence of barriers are likely violated in Padang Terap's 

heterogeneous landscape, where topography (hills, levees) and anisotropic flow (riverine systems) 

shape flood behavior. Critically, the analysis remains static, neglecting the temporal dynamics of 

flooding, a significant limitation given that floodwater distribution evolves markedly over hours 

or days. A more robust methodology would integrate spatiotemporal models, such as space-time 

Moran’s I. Moreover, by focusing solely on physical inundation, the study omits crucial socio-

economic dimensions of flood risk, such as population vulnerability and adaptive capacity, 

thereby capturing only the hazard, not the complete risk picture. 

The optimized hotspot analyses across different flood thresholds (0.3 m, 2.0 m, 2.5 m, and 3.7 m) 

present additional layers of limitation. At the 0.3 m flood level, the use of coarser elevation data 

(10 m–30 m DEM) rather than high-resolution LiDAR-derived DEMs likely missed microtopo-

graphic variations that are critical for accurate inundation modeling (Muhadi et al., 2020). The 

aggregation of rainfall data and absence of fine-scale runoff modeling further constrain the re-

liability of hotspot delineations. Uncertainties in hydrological modeling including rainfall-runoff 

relationships and channel hydraulics are particularly pronounced in ungauged basins like Padang 

Terap and could account for a significant proportion of prediction error (X. Zhou et al., 2021). 

Without the ability to calibrate models against long-term flood records, flood depth estimates 

carry substantial uncertainty margins. These limitations are compounded by the static nature of 

the analysis: the flood models represent only isolated snapshots rather than accounting for inte-

rannual variability driven by monsoonal shifts or dam management operations. At the 2.0 m 

threshold, the limitations become even more pronounced. As Shrestha et al. (2025) and Shrestha 

et al. (2025) emphasize, flood susceptibility models are highly sensitive to input data resolution. 

The reliance on coarse DEMs risks misrepresenting the complexity of terrain and built environ-

ments, especially in rural settings where fine-scale depressions or embankments govern flood dy-

namics. Moreover, this stage of analysis continues to exclude critical social dimensions, such as 

poverty, age, and housing quality, which significantly mediate the impacts of physical exposure 

(Peiris, 2024). Without spatially explicit socio-economic data still scarce for rural Kedah, the 

study treats all flooded areas as equivalently vulnerable, a major oversimplification. Similar cri-

tiques apply at the 2.5 m water level. Here, results are further limited by the assumption of uniform 

inundation without dynamic modeling of flood propagation or the effects of land cover change. 

Without accounting for the influences of evolving urbanization or infrastructural interventions, 

the analysis risks both overestimating and underestimating flood extents. Said et al. (2024) 

highlight that the Padang Terap communities possess limited flood adaptation measures, sugges-

ting that exposure without consideration of resilience factors provides an incomplete risk por-

trayal. Moreover, as Sibandze et al. (2025) warn, flood risk mapping in developing regions like 

Malaysia suffers from systematic data limitations, with static flood maps likely underestimating 

the accelerating risks posed by climate change (Wing et al., 2022). 

Finally, at the most severe 3.7 m flood level, the optimized hotspot analysis relies heavily on the 

assumptions of the ArcGIS tool (Jamru et al., 2024; Jubit et al., 2024, 2025; Masron, Ahmad, 

Mohd Sahid, et al., 2025; Masron, Ahmad, Zanudin, et al., 2025), including spatial relationship 
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conceptualizations that may not fully capture flood behavior across hydrologically connected 

landscapes. Despite automatic corrections for multiple testing , any misalignment between real-

world flood dynamics and the imposed spatial models could lead to either inflated or diminished 

hotspot identification. Additionally, administrative boundary-based analyses risk introducing mo-

difiable areal unit problem (MAUP) biases, artificially segmenting continuous flood flows at ar-

bitrary lines. Furthermore, as the analysis isolates only the physical hazard clusters, the absence 

of population or economic exposure data leaves the socio-economic consequences of these floods 

largely speculative. The reliance on a single flood depth further fails to capture the temporal pro-

gression and velocity of floods, reducing the applicability of findings to dynamic real-world con-

ditions. In sum, while this GIS-based spatial analysis provides a robust first-order understanding 

of flood hazard patterns in Padang Terap, its interpretations must be tempered by substantial 

methodological, data, and conceptual limitations. Future research should prioritize the integration 

of high-resolution topographic data, dynamic hydrodynamic modeling, multi-scenario analyses, 

and comprehensive socio-economic vulnerability layers to move from hazard mapping towards 

holistic flood risk assessment (Pappalardo & La Rosa, 2023). 

8. Future and Recommendation of Studies 

The findings of this study, which recorded floodwater levels ranging from 0.3 meters to 3.7 me-

ters, clearly demonstrate the gradient of flood impacts on residential structures, highlighting the 

urgent need for enhanced spatial flood risk analysis and informed adaptation strategies (Said, 

2017). Building on these insights, future research must embrace methodological, technical, and 

policy-driven innovations to create a comprehensive, dynamic flood risk framework for Padang 

Terap and similarly vulnerable regions. From a methodological perspective, spatial autocorrela-

tion analysis can be significantly deepened through the application of multi-scale spatial tech-

niques. Computing Moran’s I across multiple distance bands or employing fractal dimension mea-

sures would elucidate the spatial scales at which flood clustering is most pronounced, while spa-

tiotemporal approaches could track the evolution of flood patterns during events, revealing how 

clustering intensifies or dissipates across different flood stages (Hassan et al., 2020). Incorpora-

ting local indicators of spatial association (LISA) and Getis-Ord Gi* statistics would allow precise 

identification of emerging hotspots and cold spots within Padang Terap that global statistics might 

overlook (Hassan et al., 2020). The integration of diverse datasets is essential to refine flood vul-

nerability assessments. Linking spatial autocorrelation results with land use, socio-economic con-

ditions, and topographic variables through advanced modeling techniques such as Geographically 

Weighted Regression (GWR) or machine learning models could enhance predictive flood map-

ping (Zakaria, Ariffin, et al., 2025). Moreover, dynamic risk mapping, informed by temporal cli-

mate data such as rainfall intensity and seasonal forecasts, would enable planners to respond to 

real-time climatic variability. Incorporating radar-based remote sensing and high-resolution satel-

lite imagery would further reduce classification errors and sharpen flood detection capabilities 

(Hassan et al., 2020). The optimized hotspot analyses conducted at various flood levels underline 

the necessity for higher-resolution geomorphological modeling. Utilizing airborne LiDAR or 

structure-from-motion photogrammetry to generate centimeter-scale Digital Elevation Models 

(DEMs) would greatly enhance the precision of floodplain delineations (Muhadi et al., 2020). 

Future studies should also incorporate post-event satellite or UAV imagery to validate and cali-

brate inundation extents, minimizing model uncertainty. 

A critical avenue for future research is the explicit inclusion of socio-economic vulnerability fac-

tors. Integrating census data, land values, and demographic characteristics into spatial analyses 

would enable the construction of comprehensive flood risk indices that reflect both physical ex-

posure and social susceptibility (Pappalardo & La Rosa, 2023). Developing vulnerability indices 

that account for variables such as age, income, disability, and housing quality would allow for 

equitable risk assessments and targeted mitigation. Climate change must be systematically em-

bedded into future flood modeling efforts. Following Khodaei et al. (2025), coupling flood sus-

ceptibility models with regional downscaled projections from global climate models (e.g., CMIP6 

scenarios) and future land-use simulations will illuminate how flood risks may evolve over co-

ming decades. This time-dynamic modeling approach is indispensable for long-term urban and 

regional planning. Emerging technologies in spatial statistics and artificial intelligence (AI) offer 

promising avenues for enhancing flood hotspot analysis. The application of geospatial machine 

learning methods such as GeoAI can uncover complex, non-linear relationships in multi-source 

datasets, thereby improving hotspot detection beyond traditional Getis-Ord Gi* techniques 

(Zhang et al., 2022). Hybrid models integrating optimized hotspot analysis with data-driven ap-

proaches, such as Random Forest classifiers trained on historical flood events, can further sharpen 

predictive accuracy. Moreover, future research should expand into multi-hazard GIS frameworks, 

recognizing that flood risks often intersect with other natural hazards such as landslides or 
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infrastructure failures. Developing composite vulnerability maps that overlay hydrological, geo-

logical, and socio-economic risks would yield a more holistic perspective for disaster management 

(Peiris, 2024; Shrestha et al., 2025). 

On the policy front, this research underscores the pressing need for adaptive flood management 

strategies grounded in spatial evidence. Authorities should integrate hotspot maps into land-use 

planning and zoning regulations, directing development away from high-risk zones and prioriti-

zing investments in green infrastructure, such as wetland restoration and permeable urban surfaces 

(Cea & Costabile, 2022; United Nations, 2023). Furthermore, early warning systems must be re-

calibrated to focus on the most vulnerable clusters, and hazard maps should be disseminated 

widely to communities through participatory communication strategies. Community engagement 

emerges as a central pillar of effective flood risk management. Consistent with findings by Cea 

& Costabile (2022), citizen participation through initiatives like community-based mapping or 

local flood monitoring can enhance the accuracy and acceptance of flood risk assessments. Edu-

cation programs tailored to residents of high-risk clusters are vital for building local resilience 

(Said et al., 2024). Continuous monitoring and iterative re-analysis are essential to account for 

dynamic environmental and socio-economic changes. Regular updates to spatial datasets, incor-

poration of real-time sensor networks, and the application of advanced space-time clustering mo-

dels would ensure that spatial analyses remain relevant and actionable. 

The analysis should be strengthened with explicit uncertainty quantification and rigorous valida-

tion. In practice, this means computing confidence intervals and variability for the spatial statistics 

rather than reporting single point estimates. For example, global Moran’s I and local hotspot in-

dicators can be computed many times under randomized conditions (permutations or spatial boot-

strapping) to build empirical confidence intervals. Recent studies underscore this: Landwehr et 

al. (2024) use bootstrapping of flood classification maps to quantify the standard deviation of 

accuracy metrics, noting that “boot-strapping is demonstrated to be a necessary tool for estimating 

variability” in map accuracy. Similarly, cross-validation schemes should be spatially-aware: ins-

tead of random splits, one should withhold entire spatial blocks during validation. As Stock (2025) 

shows, spatial block cross-validation “yield[s] better error estimates under spatial dependence,” 

making it essential for geospatial models. Sensitivity analysis is also crucial: parameters such as 

rainfall threshold, land-cover weights, or distance scales should be varied (for example via Latin-

hypercube Monte Carlo or Fourier-Amplitude Sensitivity Tests) to see how hotspots change. 

Flood hazard studies have applied exactly this approach; for instance, Bodoque et al. (2023) ran 

thousands of Monte Carlo simulations to produce probabilistic flood maps and found that the 

resulting inundation area was highly variable concluding that a single deterministic flood map is 

“insufficiently trustworthy” without uncertainty analysis. Applying these techniques would give 

Padang Terap’s hotspot analysis explicit error bounds and robustness checks, addressing the cur-

rent gap in uncertainty reporting. 

Beyond statistical measures, independent validation is needed to ensure hotspots reflect real 

floods. Post‐event satellite imagery can serve as ground truth. For example, Masafu & Williams 

(2024) used high-resolution satellite video to delineate flood extents and velocities, then directly 

compared those to 2D hydraulic model predictions, substantially improving model validation me-

trics. Hooker et al. (2023) compare ensemble flood-forecast maps against SAR-derived flood 

maps, computing a “spread–skill” metric that reveals where forecasts systematically over- or un-

der-predict inundation. By analogy, the Padang Terap study could validate its hotspot maps 

against independently derived inundation products – for example, Sentinel-1 SAR flood maps, 

Sentinel-2 optical flood masks, or archival Landsat composites from past events. Historical data 

can also help: ground-survey records of maximum flood heights or crowdsourced high-water 

marks would test whether predicted hotspots coincide with known flood impacts. In fact, Satriano 

et al. (2024) showed that their automatic Sentinel-2 flood detection (RST-FLOOD) agreed more 

closely with official emergency maps than an alternative method, implying that careful remote-

sensing validation can yield highly accurate flood maps. Adopting this kind of cross-check com-

paring the hotspot predictions to any available satellite or field flood observations will greatly 

improve confidence in the results. 

Critically, stakeholder engagement should be part of the validation loop. Participatory GIS and 

community mapping can reveal local flood risk patterns that models may miss. Gnecco et al. 

(2024) describe how community workshops and site surveys were used to co-produce georefe-

renced flood-risk maps: residents and planners jointly identified problematic drainage sites and 

overlayed these on a GIS, yielding a “participatory map” that guided adaptation (including green 

infrastructure) in Genoa. Likewise, Hummel et al. (2025) found that partnering with underserved 

neighborhoods via a digital mapping tool uncovered neighborhood-specific flood exposures invi-

sible to conventional data, and that the resulting information “complement[s] top-down” 
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resilience assessments and “improve[s] equity” in planning. In Padang Terap, iterative feedback 

loops could follow a similar path: preliminary hotspot outputs should be reviewed in meetings  

with local authorities, community leaders, and affected residents, who can point out known flood-

prone streets or validate mapped clusters. Incorporating this feedback. For example, by adjusting 

input weights, refining model parameters, or adding local flood inventory points and then remap-

ping will yield hotspot layers that more closely reflect lived experience. Such co-produced maps 

not only have higher validity but also greater utility in adaptation planning, since they embody 

stakeholders’ knowledge. As Gnecco et al. (2024) note, participatory mapping can foster co-ste-

wardship of flood risk data, and community involvement ultimately increases both the scientific 

credibility of the hotspots and the community’s trust in using them for management (Hummel et 

al., 2025). 

Finally, the anticipated intensification of flood risks under future climate scenarios, as highlighted 

by Wing et al. (2022), demands an urgent and proactive policy response. Integrating hotspot ana-

lyses with dynamic hydrologic-hydraulic models and socio-economic vulnerability assessments 

will enable planners to anticipate and mitigate emerging risks before they materialize. Adaptation 

strategies must be flexible, interdisciplinary, and rooted in the integration of scientific evidence 

with community-based governance models (De Risi et al., 2018). In conclusion, advancing flood 

resilience in Padang Terap requires a synthesis of multi-scalar spatial analysis, socio-economic 

vulnerability mapping, climate-adaptive modeling, and participatory governance. By iteratively 

combining high-resolution GIS analysis with flexible, inclusive policymaking, future research and 

practice can build a flood management framework that is scientifically rigorous, socially equi-

table, and responsive to the evolving challenges of climate change and urbanization (Cea & Cos-

tabile, 2022; Fox et al., 2024; Said et al., 2024; Shrestha et al., 2025; United Nations, 2023; Za-

karia, Ariffin, et al., 2025). 

9. Conclusion 

By applying fine-scale GIS-based spatial statistics (Moran’s I and optimized Gi* hotspots) across 

multiple flood-depth scenarios, our study reveals that flood hazard in Padang Terap is intrinsically 

controlled by terrain rather than being randomly dispersed. Broad low-gradient floodplains, nota-

bly the Belimbing Kanan/Kiri and Padang Temak valleys, act as water-accumulation basins that 

generate intense flood clusters, whereas the steeper upland mukims drain more effectively and 

remain largely unaffected. In fact, roughly 61 % of the district’s flood-prone area at the 2.5 m 

depth threshold is confined to these three sub-districts, underlining the extreme spatial heteroge-

neity of risk. Crucially, leveraging sub-10 m DEM and meter-scale flood grids enabled us to re-

solve minute inundation patches. For example, an ≈0.13 km² hotspot in Tekai Kanan (≈0.9 % of 

that mukim) at 2.0 m depth which would be washed out under conventional 10–30 m datasets. By 

capturing very gentle (<5°) concave terrain features and narrow drainage channels, our approach 

delineates flood clusters multiple-fold more precisely than coarse methods. This granularity trans-

lates into quantifiable value: spatial autocorrelation intensifies with each increment of flood depth 

precisely in those microtopographically predisposed areas, enabling hotspot boundaries to be lo-

cated within tens of meters rather than spread across whole mukims. In practice, these insights 

equip planners to allocate mitigation resources (levees, retention basins, zoning) directly to the 

concave, low-lying flood hubs identified, rather than diluting efforts across the entire district. 

Ultimately, integrating fine-grained spatial analysis advances flood-risk methodology by explic-

itly linking slope and elevation to hazard clustering, thus providing a rigorous basis for targeted 

disaster planning. Such spatially explicit evidence forms the bedrock of evidence-based, spatially 

just disaster governance aligning local flood mitigation with national resilience strategies and cli-

mate-adaptive planning. 
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