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Abstract — This study aims to determine the level of harmonics, and conduct harmonic analysis on the electrical system
in the new Building of the Information Technology Department of Samarinda State Polytechnic. Harmonics are electric
waves that have frequencies with multiples of the base frequency of the power source (50 Hz in Indonesia). Harmonics can
arise due to the use of electronic equipment that has non-linear load properties. This is becoming a major problem for
power quality issues and harmonic analysis is required to scrutinize in component modeling to minimize or eliminate these
harmonic disturbances. Based on research that the harmonic content in the new building of the Information Technology
Department of Samarinda State Polytechnic has not met the standards. In this case, the power quality in such buildings
exceeds the specified standards. The method used is the design of passive filter simulation in distribution transformers
using ETAP software. The result of this study is a decrease in harmonic currents after installing a passive filter with an
initial THDi value in phase S of 59.84% for IHDi values in the 5th order of 57.25% the value does not meet IEEE 519-2014
standards, the use of single-tuned passive filters can reduce the THDi content in phase S to 10.94% and the 5th order phase
S down to 10.46 already meets IEEE 519 — 2014 standards, namely THDi 15% and IHD:i in the 5th order 12% with SCRatio

between 100-1000 A.

Keywords — harmonic analysis; power quality; passive filter; THDi; IEEE 519-2014 standards.

I. INTRODUCTION

ELIABILITY of an electrical power system is
Rachieved when it can continuously provide the
electrical energy needed by consumers with good power
quality in terms of voltage regulation and frequency
regulation. Continuous electricity supply is crucial for
various sectors, including educational institutions, in-
dustrial areas, shopping centers, and households [1-8].
The use of alternative power sources, such as solar and
wind energy, can help ensure a reliable and sustain-
able power supply [1,2]. However, the intermittent
nature of these sources necessitates the use of inte-
grated energy systems [2]. Monitoring and managing
energy consumption is also crucial for ensuring a stable
power supply [3, 8]. The importance of uninterrupted
power supply is particularly emphasized in high-tech
power enterprises [4]. The security of electricity supply
is a key determinant of sustainable development [6].
In Nigeria, the need for continuous power supply in
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universities is highlighted, with a focus on energy con-
sumption and demand [7, 8].

In an industrial area, this prevents companies from
suffering production losses or loss of production,’
which can be financially detrimental. In reality, many
problems are faced by an electrical power system in
providing continuous electricity. Power quality issues
are becoming increasingly important because voltage
instability can damage equipment that is sensitive to
voltage changes, especially electronic equipment. Non-
linear loads are one of the key factors affecting power
quality, as they are a source of harmonics that can de-
grade power quality [9-11].

Voltage sags, a common power system distur-
bance, can have significant impacts on sensitive equip-
ment, leading to financial losses [12]. These sags are
often caused by system faults and can be mitigated
through power conditioning or equipment design mod-
ifications [13]. The use of a Mini Dynamic Sag Cor-
rector and control level embedded solutions can help
equipment ride through voltage sags [12]. The pres-
ence of harmonics, another common disturbance, can
be reduced through the use of a Dynamic Voltage Re-
storer with a battery-supported control algorithm [14].
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The detection of these disturbances is crucial, and an
uncertainty model approach can be used for this pur-
pose [15]. Reduced power factor and the presence of
harmonics also decrease the efficiency of electricity
use. Therefore, an evaluation of the electrical system
is needed to mitigate the impact of increased produc-
tion capacity. In power calculations, the power factor
plays a crucial role. The power factor is a measure of
the power transmitted between the source and the load.
The power factor varies between 0 and 1 but is usually
expressed as a percentage. The main cause of voltage
sags is faults in the system network. Other causes in-
clude large loads (especially in industrial systems) and
sometimes large inductive loads. Non-linear loads are
the main cause of harmonics in the electrical network,
which is a very serious problem for large industries.
Non-linear loads are power electronic devices such as
variable speed drives, rectifiers, and inverters. These
power electronics devices cause non-sinusoidal wave-
forms, which are disrupted by high-frequency waves
(harmonics), leading to disturbances in the power sys-
tem and its equipment. The objective is to study the
power quality of the electrical system at an educational
institution, specifically in the New Building of the In-
formation Technology Department at Samarinda State
Polytechnic, focusing on the power factor and harmon-
ics, model and simulate the electrical system using
ETAP software version 16, and analyze the simulation
results. Thus, it is expected that there will be an im-
provement in power quality and electricity usage. The
results obtained are expected to be beneficial in the in-
dustrial world and applicable to industries with power
factor, harmonics, and voltage imbalance issues. This
will also enhance mastery of science and technology in
power quality improvement [9, 16].

The New Building of the Information Technology
Department is an educational facility owned by the gov-
ernment, equipped with electrical equipment to support
the work of its staff. This equipment can be damaged
if powered by an unstable source. Therefore, a power
quality analysis will be conducted under the title "Har-
monic Analysis in the New Building of the Information
Technology Department at Samarinda State Polytech-
nic,” with the hope that the power supply and system in
the New Building of the Information Technology De-
partment at Samarinda State Polytechnic will remain
well-maintained, along with the existing equipment. A
solution to reduce the impact of harmonics on the dis-
tribution system is to use passive filters, which are used
to improve the power quality of the electrical system.
Various techniques have been implemented to improve
harmonics [10, 11,17, 18].
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II. RESEARCH METHODS

The research conceptual framework is a thought process
for researchers related to the scope, material limitations,
and results to be achieved in the research stages. In
the New Building of the Information Technology De-
partment, there are non-linear loads such as TL lamps,
computers, AC, and electric motors. These loads can
worsen power quality and cause harmonics, affecting
the performance of the system and electrical equipment,
impacting current and voltage. A range of studies have
demonstrated the effectiveness of harmonic filters in
reducing harmonics in electrical systems. Active power
filters, such as those simulated by Mudaheranwa [19]
and Andang [20], have been shown to significantly de-
crease harmonic content, with Mudaheranwa achieving
a 0 percentage total harmonic distortion. Passive filters,
as investigated by Abood [21], have also been found
to be effective in reducing harmonics and improving
power factor. Active parallel filters, as discussed by
Benaouadj [22], have been shown to improve energy
quality by decontaminating harmonic pollution. Series
active power filters, as utilized by Madhubabu [23],
have been effective in reducing harmonics and compen-
sating for voltage distortions. Shunt active power filters,
as studied by Sabarimuthu [24], have been found to ef-
fectively remove harmonics in electric vehicle charging
applications. Hybrid power filters, as tested by Wa-
heed [25], have been shown to reduce current harmon-
ics and improve performance in power systems. Lastly,
space vector pulsewidth modulation and shunt active
power filters, as applied by Mebrahtu [26], have been
effective in mitigating harmonics in industrial sectors.
The filter contains a series of RLC components that
function to reduce harmonics and improve the power
factor due to the capacitor component.

Based on this description, the research conceptual
framework related to the targets to be achieved is as
follows: First. Model and simulate the electrical power
system in the New Building of the Information Tech-
nology Department using ETAP software, then test it to
ensure the model is ready for analysis using harmonic
filters. Second. Implement and analyze the improve-
ment in power quality made before and after installing
the harmonic filter.

Figure 1 shows the operational research frame-
work flowchart, indicating that the research process
begins with a literature review, including a literature
study and case study, followed by obtaining reference
and field data from the New Building of the Information
Technology Department at Samarinda State Polytech-
nic. The software used for analysis includes ETAP
16, Microsoft Word, and Microsoft Excel, with the lit-
erature review results detailing the specifications and
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Figure 1: Operational Research Framework

functions of the harmonic filter.

The research continues with data processing,
where reference and field data are analyzed using ETAP
software, producing processed data in the form of
power flow. This processed data is then re-analyzed to
determine the harmonic filter capacity. After design-
ing and applying the filter to the circuit, it is checked
whether it meets the IEEE THD standard. If it meets
the standard, the process continues to the analysis stage;
otherwise, it returns to the filter design stage.

The final stage involves simulation results show-
ing the impact of the filter installation, along with an
analysis of the simulation results using tables, graphs,
and images.

i. ETAP Software Simulation Design

In designing and analyzing an electrical power system,
application software is essential to represent real con-
ditions before a system is realized. ETAP (Electric
Transient and Analysis Program) is one such applica-
tion software used to simulate electrical power systems.
ETAP can work offline for power system simulations
and online for real-time data management or system
control.

Before conducting research using ETAP software,
it is essential to understand the parameters used in the
research process on harmonics. Below is the simple
circuit design to be used, with phases R, S, and T repre-
sented as the electrical load system in the Information
Technology Department Building.

Before running the circuit above, first, fill in the
parameters used, starting with the power grid. The
power grid or PLN source is an ideal voltage source,
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Figure 2: Simple Circuit Design for ETAP Software Simu-
lation

meaning it can supply power with a constant voltage
even if the absorbed power is significant. The power
grid can be a large generator or a substation that is part
of a large interconnected power system. Double-click
on the power grid, then fill in the data on the Info and
Rating tabs with a power grid rating of 20 kV according
to field measurement data.
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Figure 3: Power Grid Rating Data Tab

Before the transformer, connect the power grid
to the bus bar by clicking and dragging the end of the
power grid to the bus bar. If done correctly, the bus bar
color will change from gray. Below is the bus editor
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T. The busbar data will be automatically filled with a esereien ‘ .
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The load will be divided into three, namely phases Classfication » [ ]x
R, S, and T. Before connecting the bus bar to the load, zore [1 12 Voktage Limi
place a cable on each line as shown Figure 7. prea | 112 vin. [ 0]

After the cables are installed, double-click, then Region [ 1 | Durston | 0| [ Gyele
;l.ick Lié)rwy, and set it according to the data, as shown bt - 2l -

igure 8.

Finally, add the static load component to the AC
component, setting the rating values of each load ac-
cording to field measurement data, as shown Figure 9.

Figure 6: Secondary Bus Data Entry

After completing the simple circuit and filling in With red letters as in the Figure 10.

the data for each component, the power flow of the
electrical system created can be determined by running
the load flow. The simulation results will be shown
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Figure 9: Static Load Data Entry

Figure 10: Load Flow Simulation Circuit

III. RESULTS AND DISCUSSION

Measurements in the Architecture Building of
Samarinda State Polytechnic were conducted for 8 days
from August 22, 2023, to August 28, 2023. To perform
calculations, simulations, and analysis of the Single-
Tuned passive filter used to mitigate harmonics in the
electrical network system of the Information Technol-
ogy Department Building, measurement data from Au-
gust 22, 2023, at 14:57 WITA was used because it had
the highest THD value, as shown in Table 1.

Table 1: Measurement Data on August 22, 2023

Time

14:57 WITA

THDi (%) Phase R Phase S Phase T
59.84 11.38 59.84 14.60

i. Determining Short Circuit Current (ISC)

The short circuit current (ISC) can be calculated using
Equation (1) as follows:

100 X Syrafo

se=Axvxz M

First, the data of the distribution transformer sys-
tem in the New Building of the Information Technology
Department of Samarinda State Polytechnic is required.
The transformer data used is taken from the ETAP
simulation data: the transformer capacity is 200 kVA,
the secondary voltage is 400 V, and the transformer
impedance is 6.75%. Thus, we have:

100 x 200,000 20,000

I = = =4276.66 A
ST /3x400x6.75 4.67653
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ii. Determining Maximum Load Current (IL)

To determine the maximum load current, the total ac-
tive power, power factor, and secondary voltage of the
transformer are required. The maximum load current
(IL) calculated is the load current on April 5, 2023,
at 15:41 WITA because it has the highest THDi value.
The maximum load current can be calculated using
Equation (2) as follows:

P
V3%V X cos¢

The required data includes the total active power
of 16,240 W, a power factor of 0.90, and a secondary
voltage of 400 V. Thus, we have:

16,240 W 16,240 W

I —26.067 A
L= /3x400x09 623

I = (2)

iti. Determining Short Circuit Ratio (SCRatio)

With the known short circuit current (ISC) and maxi-
mum load current (IL), the short circuit ratio (SCRatio)
on August 22, 2023, at 14:57 WITA can be calculated

using Equation (3) as follows:

Ji
SCRatio = €
L

3)

The required data includes a short circuit current
0of 4276.66 A and a maximum load current of 26.06 A.
Thus, we have:

Isc _ 4276.66
I 26.06

Based on the calculated SCRatio, the THDi limit
according to IEEE 519-2014 standards is 15% for
SCRatio between 100-1000. Among the three phases,
harmonics are more dominant in phase S, so phase S
data is used as the sample. The comparison of field mea-
surement results with the permissible IEEE 519-2014
standards for the electrical system in the Information
Technology Department can be seen in the following
Table 2:

Table 2: Comparison of Measured THDi with IEEE 519-

SCRatio = =276.85

2014 Standards
. THDi Content IEEE Standard
me Field Measurement Phase 519-1992
R S T
Feb 22,2023 11.38%  59.84% 14.60% 15%
Meets Does Not Meet Meets ¢

Standard  Standard Standard

Table 2 shows the comparison between the mea-
sured THDi in the field and the IEEE 519-2014 THDi
standard, indicating that each phase has not met the
standard, particularly phase S.

iv.  Simulation Before Installing Single-Tuned Filter

The following is a simple simulation of the electrical
system in the New Building of the Information Tech-
nology Department using ETAP software. The load
data used in the ETAP simulation is the load data on
August 22, 2023, at 14:57 WITA.

Table 3: Comparison of Running THDi and THDv Results
in the Information Technology Department

Location Simulation Results IEEE Standard 519-2014 Description
THDi (%) THDv (%) THDi(%) THDv (%) THDi THDv
Phase R 11.38 0.549 15 5.0 Meets Meets
Phase S 59.84 0.508 15 50 DoesNOL e
Meet
Phase T 14.56 0.555 15 5.0 Meets Meets

As seen in Table 3, the THD current in the electri-
cal system simulation in the Information Technology
Department Building has not met the established stan-
dard, particularly in phase S, which is very dominant.
However, the THD voltage values still meet the IEEE
519-2014 standard, which is below 5%.
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Figure 11: Simulation Results Before Installing Single-
Tuned Filter

Based on the simple simulation results using
ETAP software, it can be seen that the THDi value
in Phase S is 59.84%, the same as the measurement
value on Wednesday, February 22, 2023, at 14:57. The
THDyv value is 0.678%. According to IEEE 519-2014
standards, the simulation does not meet the standard,
particularly in Phase S, while phases R and T meet the
standard of 15% for ISC/ILoad values between 100-
1000 A.

v. Designing a Filter to Reduce Harmonic Distortion

The filter used to reduce harmonic distortion is a single-
tuned filter. The calculation will be performed on phase
S, which has the highest harmonic current distortion
of 59.84%. First, the harmonic order to be eliminated
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must be determined, which is the 5th order because it
has the largest distortion. The calculation can be seen
below.

P=723.012 kW
cosp =0.84
6 = cos™1(0.84) = 32.83°
6, = cos1(0.99) = 8.10°
Q.= P(tan6; —tan 6,)
=723.012 x (tan32.83° —tan8.10°)
=363.67 kVAR

The capacitor value in the simulation will refer to
equations 10 and 11 as follows:

_kv?
° " kVAR
X = 04 = 0.000439 kQ = 0.43Q
363.67
C= %}‘XC’ f = fundamental frequency of 50 Hz
1
C=
2x3.14%x50x0.43
=0.006839 F

=6.839 x 107> = 6839uF

In this simulation, the inductor value will be
slightly below the 5th order, at 4.9, to prevent reso-
nance that could disrupt the system. The inductor value
will refer to equations 12 and 13 as follows:

1
(C)(2mfn)?

1
(6.83x 1073)(2x 3.14 x 50 x 4.9)2
=0.0000614 H
X, =27mfL =2 x 3.14 x 50 x 0.0000614
= 19.2796%

Comparing the harmonic load flow analysis with-
out a filter in Figure 5, the THD current percentage
decreased from 59.84% to 10.96%, indicating that the
filter significantly reduces THD.

vi. Filter Installation Results

After simulating before and after installing the 5th or-
der single-tuned filter, it was found that the THDi and
THDv values in phase S decreased, and phases R and
T also showed a reduction in THDi current, although
not as significantly as in the phase where the filter was
installed. Based on the short circuit ratio calculations
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o 200 XA
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Figure 12: THD Values After Installing the Filter

according to IEEE 519-2014 standards, the following
table compares the THDi and THDv values before and
after installing the single-tuned filter with the estab-
lished standard.

Table 4: Comparison of THD Values Before and After In-
stalling the Filter

Simulation Results with ETAP 16 Software IEEE Standard

Phase  pofore After After 519-1992
Filter Filter Installation
Installation Installation of 5th Order
THDi THDv THDi THDv IHDi IHDv THDi THDv
R 11.38 0549 114 0548 10.084 033 15% 5%
S 59.84 0.508 109 0.507 10461 032 15% 5%
T 146 0555 146 0554 13237 032 15% 5%

From Table 4, it can be seen that the THDi and
THDv values before and after installing the filter. The
installation of a passive filter can reduce harmonic dis-
tortion in the electrical system with a THDi value of
11.4% in phase R, 10.94% in phase S from 59.84%,
and in phase T, there was no decrease except for the Sth
order, which dropped to 13.23% from 14.6%. These
values meet the IEEE 519-2014 standard of 15% for
SCRatio between 100-1000.

Similarly, the THDv decreased due to the instal-
lation of the passive filter. The THDv value of the
electrical system in the Information Technology De-
partment Building still meets the IEEE 519-2014 stan-
dard, which is below 5%, with the simulation results
showing a THDv value of 0.50% before the installation
of the passive filter and 0.33% after the installation of
the passive filter.

Table 5 shows that the use of passive filters can
reduce current THD by 48.9%, and the 5th order de-
creases by 46.79%. Similarly, subsequent orders have
met the IEEE 519-2014 standard of 15% for SCRatio
between 100-1000. With the reduction of current THD,
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Table 5: Comparison of THDi Percentage Before and After
Installing the Filter in Phase S

THDi (%) Without Filter THDi (%) With Filter = A THDi (%)

THDi 59.84 10.94 48.9
5th Order 57.254 10.461 46.793
7th Order 14.381 2.626 11.755
11th Order 7.774 1.444 6.33
13th Order 2.975 0.543 2.432
17th Order 3.695 0.668 3.027
19th Order 2.31 0.418 1.892
25th Order 1.418 0.267 1.151

the voltage THD will also decrease, resulting in better
voltage quality after installing the passive filter.

IV. CONCLUSION

Based on the analysis and simulation results of the re-
search, it can be concluded that the voltage harmonic
content (%THDv) in the New Building of the Infor-
mation Technology Department at Samarinda State
Polytechnic is generally above the permissible stan-
dard (5%), but the current harmonic content (% THDi)
is above the permissible standard (15%), even reaching
56.64% during high load usage. This research used
ETAP 16 software to determine the percentage of volt-
age THD and current THD in phase S, which exceeds
the IEEE 529-2014 standard. The simulation results
show that on February 22, 2023, at 14:57, the current
THD percentage in phase S was 59.84%, exceeding
the IEEE 519-2014 standard of 15% for the range of
100-1000 A. For more details, see Table 2.4. After de-
signing, simulating, and installing the single-tuned filter
in phase S, which has the highest harmonic distortion,
the current THD percentage decreased from 59.84%
to 10.96%, and the 5th order phase S decreased from
57.254% to 10.461%, meeting the allowable harmonic
distortion standard of 15%.
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