

Indonesian Journal on Learning and Advanced Education

http://journals.ums.ac.id/index.php/ijolae

Development and Validation of a Hemostatic Activity-Based Learning Video on the Circulatory System for High School Biology Education

Irma Naura Rifanka¹, Ruqiah Ganda Putri Panjaitan^{2⊠}, Andi Besse Tenriawaru³, Liangyue Li⁴

¹⁻³Faculty of Teacher Training and Education, Universitas Tanjungpura, Indonesia

DOI: 10.23917/ijolae.v7i1.23749

Received: July 18th, 2024. Revised: September 11st, 2024. Accepted: October 9th, 2024 Available Online: November 9th, 2024. Published Regularly: January, 2025

Abstract

The rapid advancement of technology enables the development of technology-based learning media that can visualize concepts clearly, such as learning videos. These videos can be developed based on various sources, including research findings. Therefore, this study aims to develop a learning video on the topic of the circulatory system for high school students in the eleventh grade, based on the hemostatic activity test of sungkai leaves extract (*Peronema canescens* Jack.). The development process follows the *Research and Development* (R&D) approach, which includes analyzing potential issues, gathering information, designing the product, validating the design, making improvements, and producing the final product. The video contains nine learning objectives organized into five sessions. The validity of the learning video is assessed based on four aspects: format, content, linguistic, and presentation. According to the validation results from the validators, all aspects received a very valid rating, with average scores of 0.96 for format, 0.95 for content, 0.93 for linguistic, and 0.95 for presentation. Overall, the average score for all four aspects is 0.95, indicating a very valid rating. This suggests that the developed video is suitable for use as a learning media.

Keywords: advancement of technology, circulatory system, learning media, learning outcomes, learning styles, learning videos, technology on education

\square Corresponding Author:

Ruqiah Ganda Putri Panjaitan, Faculty of Teacher Training and Education, Universitas Tanjungpura, Indonesia

Email: ruqiah.gpp@fkip.untan.ac.id

1. Introduction

The effects Information Communication Technology and education cannot be over emphasized (Awaludin et al., 2022; Fuadi et al., 2021; Onojah et al., 2021). At this point, technological advancements in the realm of education wield considerable influence. especially on student (Bhosale et al., 2020; Yudha et al., 2020). Students in primary, middle, and high schools today are part of Generation Z, a cohort highly adept with technology. Gen Z students demonstrate

proficiency in utilizing the internet, such as for knowledge-seeking and exploration (Basuki, 2020; Bucăţa, 2023). Their close affinity with technology imbues Gen Z students with distinct learning styles (Iftode, 2020; Yusuf, 2016). Understanding students learning styles is crucial as it can enhance the effectiveness of the learning process and determine students' success (Magdalena & Afifah, 2020; Sofian & Rahmat, 2023). When educators understand how students absorb and process information based on their learning styles, the learning and

⁴Xiangsihu College of GuangXi Minzu University, China

communication processes become easier and more enjoyable. This motivates students and makes the learning process more effective (Munir et al., 2022). Hence, educators must be capable of devising suitable learning processes for Gen Z students (Reza & Tinggogoy, 2022; Yalcin-Incik & Tolga-Incik, 2022). Appropriate learning processes effectively aid students in absorbing optimizing information. their learning outcomes, thereby enhancing their academic success (Isnanto & Hamu, 2022).

Teachers need to utilize technology in creating learning media (Saputri et al., 2020; Sulistyanto et al., 2022). The utilization of technology in the use of learning media can be an option for teachers; for instance, learning videos (Ilesanmi, 2023; Salsabila & Agustian, 2021). Learning videos are audiovisual media that project moving images, used to convey messages and stimulate the minds, feelings, attention, and willingness of students in the learning process (Kristanto, 2016). Learning videos serve functions, including the attention function, which can attract students' attention and direct their focus on the material, the affective function, which can evoke students' emotions and attitudes, and the cognitive function. which can accelerate the achievement of learning objectives (Nurwahidah et al., 2021; Setiawan et al., 2022). The use of video as a learning media can assist students who have difficulty understanding the material by presenting a combination of images and sound

(Fitri & Ardipal, 2021). Learning videos can also provide visualization of abstract concepts that students may have difficulty imagining concretely (Atika et al., 2018). In line with this, the results of Popova et al. (2014) research indicate that with visualization and audio explanations,

students can more easily understand, grasp, and remember the material being studied.

The topic of the circulatory system in the Merdeka Curriculum is one part of the Biology subject that encompasses many concepts with high complexity and abstract study objects (Anggraini et al., 2016). The circulation system material involves the interaction among organs such as the heart, lungs, blood vessels, and blood cells, as well as intricate mechanisms like the heart pump, blood circulation, and substance exchange within the body. This complexity makes it challenging for students to grasp circulatory system material (Khairaty et al., Additionally, the 2018). concepts circulatory system material are abstract because they encompass microscopic objects and processes that cannot be directly observed (Fajar, 2016). The circulatory system material is a focal point in Biology education due to its crucial role in ensuring the survival of organisms (Handayani, 2021). Furthermore, the circulatory system also covers aspects related to daily life, such as the cessation of bleeding, which is associated with the concept of blood clotting (Arofah & Raharjo, 2017). So far, various learning media have been applied in Biology teaching, particularly for the circulatory system topic, including learning videos (Wangkanusa et al., 2023), interactive multimedia (Anggraini et al.. 2019). interactive simulations (Aswadin et al., 2021), 3D models (Munafiah, 2023), and mobile applications (Devega et al., 2022).

In the development of learning videos, the content can be sourced from various materials such as textbooks (Gazali & Nahdatain, 2019), direct experiences (Irawan et al., 2017), and research findings (Wangkanusa et al., 2023). The use of learning videos for the circulatory system is highly recommended to facilitate students'

understanding of the material, as it can provide clear visualizations (Safitri et al., 2021). Learning videos not only aid visualization but also cater to visual, auditory, and kinesthetic learning styles (Urba et al., 2024). Research conducted by Syuaib et al. (2018) and Irawan et al. (2017) indicates that the use of learning videos in Biology subjects is a practical and effective solution to implement.

Based on the description above, this study will develop learning videos for the circulatory system subject in grade XI based on the activity test of external bleeding cessation using ethanolic extract of sungkai leaves (Peronema canescens Jack). This development aims to explain the concepts within the circulatory system material, visualize objects in detail and interactively, provide concrete examples students regarding the mechanism of bleeding cessation, and meet the learning needs of Gen Z students based on their learning styles.

2. Method

This research uses the Research and Development (R&D) approach. R&D is a research approach used to develop and validate products. Developing products involves updating existing products to make them more practical, effective, and efficient, or creating entirely new products that did not previously exist. Validating products, on the other hand, is the process of testing the validity or effectiveness of a product. (Sugiyono, 2021).

Referring to Sugiyono (2021), the steps in R&D research consist of 11 stages: (a) analysis of potential and problems, analyzing capabilities and discrepancies between expected outcomes and actual occurrences, (b) gathering information, the process of gathering information that can be

used as material for planning a specific product intended to address previously analyzed problems, (c) product design, creating a product design, (d) Product validation, the process of assessing whether a product will be effective or not, (e) design the process of improvement, (f) revision, product creation, the process manufacturing the product, (g) product testing, the process of testing the product on a limited sample, (h) product revision 1, the process of improving the product, (i) usage testing, the process of implementing the product in real-world conditions on a broad scale, (j) product revision 2, the process of product refinement if deficiencies are found during real-world use, and (k) production, the process is of mass production if the tested product is deemed effective. However, this research only goes up to the stage of product creation.

a. Potential and Problem Analysis

In this stage, interviews with biology teachers of grade XI are conducted to understand aspects related to the learning process, the use of learning media, and the difficulties encountered by students in the learning process at school.

b. Information Gathering

In this stage, testing of the external bleeding cessation activity using ethanolic extract of sungkai leaves (*Peronema canescens* Jack.) is conducted. The results will be included in the learning video, along with an analysis of the sequence of learning stages in the circulatory system material.

c. Product Design

The development of learning video is planned using the Canva application. This stage involves the analysis of learning objectives, creation of storyboards, scenario development, and completion of video production.

d. Product Validation

An assessment is conducted to determine the feasibility and validity of the learning video developed using the content validity coefficient method.

e. Design Revision

In this stage, revisions are made to the learning video based on the discussions with validators.

f. Product Creation

The last stage, which is product creation, the learning video is produced based on the previously validated design by validators.

The instruments used in this research are teacher interview sheets for the analysis of media development needs, instrument validation sheets, and learning media validation sheets. The media validation sheets used have been previously validated by validators using instrument validation sheets.

The data collected in this comprises qualitative and quantitative data. Qualitative data is derived from interview findings and instrument validation outcomes, while quantitative data is sourced from learning media validation results. The qualitative data from interviews and instrument validation, including comments, suggestions, and inputs, are summarized and selected based on their relevance to the research objectives. The analysis of learning media validation data utilizes the Contentvalidity Coefficient (Aiken's V) method as per Aiken (1985). The Aiken V index is a measure of rater agreement the appropriateness of items to measure the intended indicators (Retnawati, 2016). The formula utilized is as follows:

$$V = \frac{\Sigma S}{n(C-1)}$$

Description:

V = validation score

S = r-Lo

r = the score given by the assessor

Lo = the lowest assessment score

C = the highest assessment score

n = the number of assessors

The final result of the calculation of Aiken's V coefficient will determine the feasibility and validity of the learning video. The interpretation of the Aiken validity index used refers to Nabil et al. (2022), as presented in Table 1.

Table 1. Interpretation of the Aiken Validity Index

Score	Category
< 0,4	Less valid
0,4-0,8	Valid
> 0,8	Very Valid

3. Result and Discussion

a. Potential and Problem Analysis

External bleeding occurs when the body's surface is injured and blood is released (Sidrotullah, 2021). The cessation of bleeding is usually done by administering chemical hemostatic drugs such as tranexamic acid, but long-term and repeated administration can cause side effects (Purwoko et al., 2022). The use of medicinal plants can be an alternative to replace the use of chemical drugs because besides having fewer side effects, medicinal plants are easily obtainable and more affordable (Kumontoy et al., 2023).

Indonesian society has long utilized natural resources for survival, including for stopping external bleeding (Sidrotullah, 2021; Sutopo et al., 2016). The sungkai plant is one of the plant species utilized in

traditional medicine or healthcare. Based on phytochemical test results, sungkai leaf extract contains flavonoid compounds, saponins, and tannins that have the potential as hemostatic agents because they can shorten bleeding time (Emilia et al., 2023).

The cessation of bleeding is related to blood clotting, which is studied in the circulatory system material for grade XI high school students. According to research conducted Wahyuni (2020).by circulatory system material is one of the subjects that are difficult for students to understand because it involves many abstract concepts and is closely related to daily life. One way to overcome this issue is by using learning media that can visualize the material and provide concrete examples, making it easier to understand, such as learning videos (Mashuri & Budiyono, 2020).

The development of learning videos on the circulatory system material for grade XI high school students based on the activity test of external bleeding cessation using ethanolic extract of sungkai leaves (Peronema canescens Jack.) can be carried out to assist students in understanding the material. In addition to visualizing the material, learning videos on the circulatory system material incorporating research findings have been developed not previously.

b. Information Gathering

The information gathered in this study is sourced from the results of the activity test of external bleeding cessation using ethanolic extract of sungkai leaves (*Peronema canescens* Jack.) and the analysis of the learning objectives flow in the circulatory system material. The test results indicate that the ethanolic extract of sungkai leaves has

proven to have external bleeding cessation activity, characterized by a shorter bleeding time compared to the other groups. These test results are then included in the learning video which is linked to the discussion on blood clotting.

The hemostatic activity of ethanolic extract from sungkai leaves is caused by the presence of flavonoids, tannins. saponins. Flavonoids function to increase platelet count and have vasoconstrictive effects that accelerate platelet aggregation, where platelets adhere to the vessel wall and form a plug, thereby expediting hemostasis process. Tanins function to accelerate the release of fibrinogen proteins, which are transformed into fibrin threads from cells and deposited on the cell's surface. The faster fibrin threads form, the quicker the wound is sealed, stopping the blood flow. Similar to flavonoids and tannins, saponins induce vasoconstrictive effects accelerate protein deposition. This relates to the blood clotting process: when there is a wound and blood flows out, platelets come into contact with the rough wound surface rupture, releasing thrombokinase. and Thrombokinase, along with calcium ions (Ca²⁺) and vitamin K, converts prothrombin into thrombin. Thrombin then transforms fibrinogen into fibrin threads that obstruct the flow of blood cells, leading to blood clot formation.

In the analysis of the learning objectives flow stage, information is gathered regarding achievements, objectives, and learning material content. Based on the analysis results, learning achievements consist of two elements: understanding biology and process skills. Furthermore, there are nine learning objectives for the learning material content, which include blood, organs circulatory of the system,

mechanisms of circulation, blood types, blood transfusion, lymphatic system, the role of the circulatory system in the transport and exchange of substances, and circulatory system disorders.

c. Product Design

After collecting information, the next step is to design the learning video using the Canva application. The learning video contains material on the circulatory system and the results of the activity test of external bleeding cessation using ethanolic extract of sungkai leaves (*Peronema canescens* Jack.), which is linked to the discussion on blood clotting. At the beginning of the video, there is a cover section shown in Figure 1 and the learning objectives shown in Figure 2.

Figure 1. The Cover of the Learning Video Consists of the Title and the Creator's Identity

Figure 2. Learning Objectives Comprising Two Learning Elements: (a) Understanding Biology and (b) Process Skills

Figure 1 illustrates that the cover page features the title of the learning video, "Circulatory System," targeted for use in Biology instruction for 11th-grade senior high school students or equivalent. It also includes the creator's identity, comprising the full name and institution, as well as information regarding the completeness of the video's content, specifically highlighting the results of testing related to external bleeding cessation activities.

Figure 2 illustrates the learning outcomes for 11th-grade senior high school students according to the Merdeka Curriculum, categorized under Phase F. The

learning outcomes consist of two elements: biological understanding and process skills.

Learning outcomes in the element of biological understanding at the end of phase F are that students have the ability to describe cell structures and bioprocesses such as membrane transport and cell division; analyze the relationship between organ structures in organ systems and their well disorders functions, as as abnormalities that occur in these organ systems; understand enzyme functions and recognize metabolic processes that occur in the body; and have the ability to apply concepts of inheritance,

development, evaluate new ideas about evolution, and biological technology innovations.

The learning outcomes in the element of process skills consist of: 1) Observing, which involves the ability to select appropriate tools for measurement and observation, and to pay attention to relevant details of the observed object; 2) Questioning and which involves formulating predicting, scientific questions and hypotheses that can be investigated scientifically; 3) Planning and conducting investigations, where students plan and select appropriate methods based on references to collect reliable data, considering risks and ethical issues in the use of these methods. Students select and use tools and materials, including the use of appropriate digital technology systematically and accurately collect and record data.

The content section of the developed learning video consists of five sessions. The first session covers the topic of blood, the second session discusses the organs of the circulatory system and the mechanism of circulation, the third session covers blood types and blood transfusions, the fourth session addresses the mechanism of blood clotting and the lymphatic system, and the fifth session discusses the role of the circulatory system in substance transport and circulatory system disorders. Each session is taught within a two-hour class period. Each session is distinguished by a divider, followed by learning objectives, learning materials, and the results of the activity test external bleeding cessation ethanolic extract of sungkai leaves (Peronema canescens Jack.). The content section of the learning video is shown in Figure 3.



Figure 3. The Content Section of the Learning Video Consists of (a) Inter-Session Dividers, (b) Learning Objectives, (c) Learning Materials, and (d) Test Results

Figure 3 illustrates the content structure of the learning video, which includes sections delineating the divisions between meetings labeled "Meeting 1", differentiating

between the first through fifth sessions. It outlines the learning objectives corresponding to the material covered in each session, for example students are able to

analyze the components that make up blood and their functions. The learning video presents varied instructional content for each meeting for example material about blood that discusses the meaning of blood and blood characteristics. The learning video also includes the results of activity test of external bleeding cessation using ethanolic extract of sungkai leaves (*Peronema canescens* Jack).

In accordance with the objectives of developing the learning video, the objects

displayed are chosen to provide a realistic visualization according to their original form. The selection of objects used in the learning video is shown in Figure 4. Additionally, the learning video also presents concrete examples based on research findings, namely the cessation of external bleeding associated with the discussion of blood clotting, as shown in Figure 5.

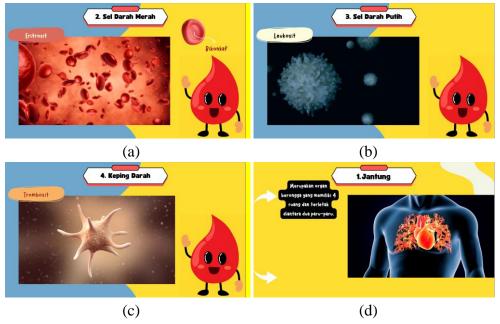


Figure 4. The Selection of Objects Aims to Visualize the Material, Including: (a) The Shape of Red Blood Cells (Erythrocytes), (b) The Shape of White Blood Cells (Leukocytes), (c) The Shape of Blood Platelets (Thrombocytes), and (d) The Location of The Heart Inside the Body

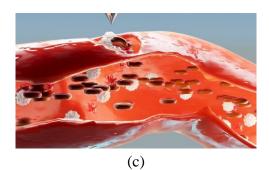


Figure 5. Concrete Examples Based on Research Findings Include: (a) Occurrence of External Bleeding, (b) Cessation of External Bleeding, (c) Discussion on Blood Clotting

Figure 4 demonstrates that the objects used in the learning video provide a realistic visualization consistent with their actual forms. For instance, red blood cells (erythrocytes) are depicted as concave or biconcave in shape, white blood cells (leukocytes) appear irregular and lighter in color, platelets (thrombocytes) are shown as irregularly shaped and colorless, and the heart is accurately represented within the body, positioned centrally in the chest, specifically on the left side of the torso.

Figure 5 presents a concrete example of research findings on the cessation of external bleeding using ethanolic extract of sungkai leaves (Peronema canescens Jack.). The study involved severing the tail of a rat that had previously been treated with the extract. The results illustrate the progression of external bleeding and its subsequent cessation, influenced by the components within the ethanolic extract of Sungkai leaves. These findings are then correlated with the blood coagulation process studied in the circulatory system module.

d. Product Validation

The developed product was initially validated to determine its suitability as an learning media (Matsun et al., 2019). The validation process involves 5 validators. media is validated using a validation sheet created beforehand. The validation sheet consists of four aspects: format aspect with two indicators, content aspect with three indicators, language aspect with three indicators, and presentation aspect with three indicators. The validation results are then analyzed using the Aiken V content validity coefficient method. The validation results of the learning video on circulatory system material for grade XI high school students based on the activity test of external bleeding cessation using ethanolic extract of sungkai leaves (Peronema canescens Jack.) indicated a very high validity, as demonstrated by a validation score of 0.95. The validation results are shown in Table 2.

Table 2. Validation Results of the Learning Video

Aspect	Number	Indicator	Average Score	Description
Format	1	Systematic presentation system	1	Very Valid
	2	Ease of understanding the entire content of the	0.93	Very Valid
		learning video		very vand
Content	3	Relevance of the presented material to the learning	1	Very Valid
		objectives and achievements		
	4	Clarity of the presented concepts	0.93	Very Valid
	5	Completeness of the presented material	0.93	Very Valid

Aspect	Number	Indicator	Average Score	Description
Linguistic	6	Conformity to the General Guidelines of	0.8	Valid
		Indonesian Spelling		
	7	Ease of understanding the sentences used	1	Very Valid
	8	Flexibility from dual meanings in the language	1	Very Valid
		used		
Design	9	Compatibility of colors, text, and images used	1	Very Valid
	10	The font style and size used	0.87	Very Valid
	11	Clarity of the narration conveyed in the learning	1	V V-1: 4
		video		Very Valid
			0.95	Very Valid

Table 2 presents the results of the learning video validation, which achieved an average score of 0.95, categorized as "very valid". This evaluation is based on four aspects: format, which includes two indicators; content, with three indicators; language, comprising three indicators; and presentation, containing three indicators. The discussion of the validation results for each aspect is presented as follows.

1) Format Aspect

The format aspect consists of two indicators: systematic presentation and ease of understanding the overall content of the learning video. The first indicator, systematic presentation, obtained an average score of 1 with a category of very valid. This indicates that the content of the learning video is wellorganized, aligns with the learning activities, and presents the material from general to specific. This is in line with the findings of Harefa et al. (2023) and Zulfariyanti et al. (2022), who suggest that learning videos should be systematically structured and present the material sequentially to facilitate understanding by students. Similarly, according to Luzyawati & Lissa (2020), the material should be presented from general concepts to more specific ones to facilitate students in understanding the essence of the material.

The second indicator, which is the ease of understanding the overall content of the learning video, obtained an average score of 0.93 with a category of very valid. This is because the segments of the learning video, the conveyed material, and the presentation of research findings are easily understood. However, the learning video does not yet include the division of material for each session, so this aspect was added during the design revision. According to Wangkanusa et al. (2023) and Zulfariyanti et al. (2022), learning videos should be easy to use and understand by anyone, especially students.

2) Content Aspect

The content aspect consists of three indicators: alignment of the presented material with the learning outcomes and objectives, clarity of the conveyed concepts, and completeness of the presented material. The first indicator, alignment of presented material with the learning objectives. obtained outcomes and average score of 1, indicating a very valid category. This suggests that the material presented aligns with the nine learning objectives. Effective learning videos are structured according to the learning outcomes and objectives, facilitating focused learning (Zulfariyanti et al.. 2022). Furthermore, they provide comprehensive material to aid students in directed learning (Gustinasari et al., 2017).

The second indicator, clarity of the conveyed concepts, received an average score of 0.93, indicating a very valid category. Overall, the concepts presented in the learning video are conveyed clearly. However, there is one topic in the video, the lymphatic system, which was considered unclear. Therefore, the explanation of this concept was improved during the design revision. According to Gustinasari et al. (2019), clarity of concepts is crucial for independent enabling learning students. Additionally, Harefa et al. (2023) state that suitable learning media exhibit clear concepts, whether in written or graphical form.

The third indicator, completeness of the presented material, obtained an average score of 0.93, also falling under the very valid category. Although very valid, the score obtained for this indicator is not perfect, indicating that some material was not included in the learning video. Initially, the material covered included blood, the organs of the circulatory system, circulation mechanisms, blood types, blood transfusions, the lymphatic system, and circulatory system disorders. However, in alignment with the Merdeka Curriculum content, additional discussions on the role of the circulatory system in transport and exchange of substances were added. Material presented in learning media should be comprehensive to enable students to study directionally (Gustinasari et al., 2017) and to achieve the established learning objectives (Harefa et al., 2023; Hasni et al., 2022).

3) Linguistic Aspect

The linguistic aspect encompasses three indicators: adherence to the General Spelling Guidelines of the Indonesian Language,

clarity of sentence structures, and avoidance of linguistic ambiguity. The first indicator, compliance with grammar rules, received an average score of 0.8, indicating it falls within the valid category, as there were some errors in capitalization and italicization in the learning video. However, the video used standard terms, appropriate punctuation, and communicative language. These errors were later rectified during the design improvement phase. Effective learning media should adhere to proper linguistic conventions to aid students' comprehension (Panjaitan et al., 2022; Salamah et al., 2020).

The second indicator, clarity of sentence structures, achieved an average score of 1, signifying it falls within the very valid category. This suggests that the sentences employed are effective, with complete sentence components and suitable vocabulary choices. Language utilized in learning media is considered proficient if it is straightforward, transparent (Panjaitan et al., 2022), and apt for explaining concepts and illustrations (Juniawati & Trimulyono, 2016).

avoidance third indicator, linguistic ambiguity, attained an average score of 1, also categorized as very valid. This indicates that the words utilized possess unambiguous meanings, and the language employed is devoid of confusion, likelihood minimizing the ofmisunderstanding. According to Gustinasari et al. (2017) and Panjaitan et al. (2021), appropriate media are those wherein sentence usage lacks linguistic ambiguity, thereby facilitating effortless comprehension by students.

4) Design Aspect

The design aspect encompasses three key indicators: color, text, and image compatibility; font type and size selection;

and the clarity of the narrative within the learning video. The first indicator, color, text, and image compatibility, scored an average of 1, indicating it falls within the very valid category. This suggests that the chosen colors contrast well, and the arrangement of text and images is harmonious, as depicted in Figure 6. The second indicator, font type and size selection, attained an average score of 0.87, also

classified as very valid. This indicates that the chosen font types are visually appealing, although in some instances, legibility might be compromised. This aligns with the findings of Dewi et al. (2024) and Harefa et al. (2023), emphasizing the importance of selecting appropriate font styles and sizes for readability, incorporating attractive colors, and integrating relevant and well-designed graphics and illustrations.

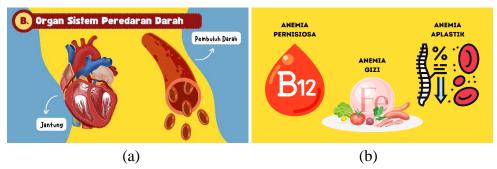
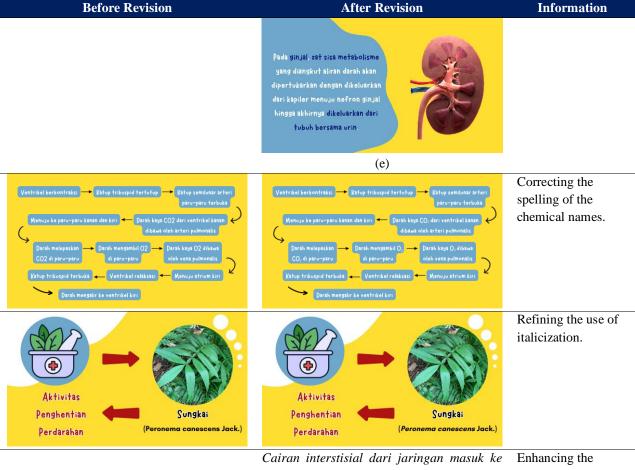


Figure 6. The Aspect of Learning Video Presentation (a) Involves the Selection of Contrasting Colors and (b) The Arrangement of Images and Text In a Harmonious Layout

Figure 6 illustrates the selection of contrasting colors between the background and the objects presented, ensuring clear visibility of the objects. The learning video's background predominantly features yellow and blue colors. Additionally, figure 6 demonstrates that the layout of images and text is well-coordinated, which aids in material delivery and enhances the visual appeal of the learning video. The material presented in figure 6 is the organs of the circulatory system which shows images of the heart and blood vessels, as well as the types of anemia, namely pernicious anemia, nutritional anemia, and aplastic anemia.

The third indicator, clarity of the narration in the learning video, attained an average score of 1, falling into the very valid category. This indicates that the narrator's voice is clear, with engaging intonation and suitable pacing, and that the narrator's voice


and background music are well-balanced. This aligns with Hakim (2017) and Indrayani et al. (2021) assertion that a suitable learning video features clear narration, facilitating students' understanding of the presented material.

e. Design Revision

After the learning video was validated, the next step involved making improvements based on the discussion with the validator to address any errors and deficiencies in the initial product design. Suggestions and feedback received were used as guidance to enhance the learning video on the circulatory system topic for 11th-grade high school students, aiming to create a better product. The revisions are shown in Table 3.

Table 3. Learning Video Revisions

Before Revision After Revision Information Adding content 🗑 Muatan Materi division for each Pertemuan 1: Darah (2 Jam Pelajaran) session. Pertemuan 2: Organ sistem peredaran darah dan mekanisme peredaran darah This part was not present in the previous (2 Jam Pelajaran) Pertemuan 3: Golongan darah dan transfusi darah (2 Jam Pelajaran) product design. Pertemuan 4: Mekanisme pembekuan darah yang dilengkapi dengan hasil penelitian penghentian perdarahan luar dan sistem limfa (2 Jam Pelajaran) Pertemuan 5: Peran sistem sirkulasi dalam transpor dan pertukaran zat gangguan sistem sirkulasi (2 Jam Pelajaran) Incorporating discussions on the VPCRAN SISTEM role of the Sirkulasi Dalam circulatory system CFANSPO & in substance Portukaran transport and exchange of ZAT substances. (a) (a) Introduction. (b) Overview. (c) Role in nutrient absorption. (d) Role in gas mendukung pertukaran zat. exchange. (e) Role in excretion of This part was not present in the previous (b) metabolic product design. wastes. Pada usus halus terdapat penyerapan zat makanan (c) Pada alveolus di dalam paru dengan banyak pembuluh darah kapiler untuk pertukaran gas (d)

Cairan interstisial dari jaringan masuk ke kapiler limfa dan mengalir ke saluran penampung. Kemudian menuju pembuluh limfa yang lebih besar dan bergabung membentuk trunkus limfa utama.

(Interstitial fluid from the tissues enters the lymphatic capillaries and flows into the collecting ducts. It then moves to larger lymphatic vessels and merges to form the main lymphatic trunks).

Cairan interstisial dari jaringan masuk ke kapiler limfa. Cairan interstisial yang sudah berada di dalam kapiler limfa mengalir dari kapiler limfa ke saluran penampung. Kemudian menuju pembuluh limfa yang lebih besar dan bergabung membentuk trunkus atau batang saluran limfa utama.

(Interstitial fluid from the tissues enters the lymphatic capillaries. The interstitial fluid that is already in the lymphatic capillaries flows from the lymphatic capillaries to the collecting ducts. It then moves to larger lymphatic vessels and merges to form the main lymphatic trunks).

Enhancing the explanation of material concepts in the lymphatic system section.

Table 3 shown that the revision made to the learning video includes adding sections that were previously absent and improving existing content. Additions include adding content divisions for each session and including discussions on the role of the circulatory system in transport and exchange of substances. Additionally, improvements were made in the use of capital letters in spelling chemical names and italicized words in writting scientific names, as well as clarifying concepts in the discussion of the lymphatic system.

f. Product Creation

The validated design is then transformed into a product in the form of an learning video. The learning video developed has a duration of 46 minutes and 34 seconds. It is designed for instruction over five sessions, covering nine content areas: blood, the system circulatory organs, the blood circulation mechanism, blood types, blood transfusion, the blood coagulation mechanism, the lymphatic system, the role of the circulatory system in substance transport, and circulatory system disorders. The video is equipped with learning objectives and goals for each content area. In addition to the instructional material, the video includes results from activity test of external bleeding cessation using ethanolic extract of sungkai leaves (Peronema canescens Jack.), which is connected to the discussion on blood coagulation.

The video features text and images that support the instructional content. Overall, the video is primarily unidirectional; however, it includes one segment where students are prompted to answer questions related to blood typing.

4. Conclusion

This research produced a learning media in the form of a video on the circulatory system for grade XI high school students. The learning video was developed based on the activity test of external bleeding cessation using ethanolic extract of sungkai canescens leaves (Peronema Jack). Therefore, the learning video not only presents learning materials but also provides concrete examples of external bleeding cessation related to discussions on blood Additionally, clotting. the developed learning video includes visualizations of abstract objects in the content to provide students with a clearer understanding and enhance the effectiveness of learning.

The learning video on the circulatory system developed based on activity test of external bleeding cessation using ethanolic

sungkai extract of leaves (Peronema canescens Jack.) is deemed very valid for learning purposes, scoring an average of 0.95. This indicates that the developed learning video has a coherent presentation, its content is easily comprehensible, the material presented aligns with the learning objectives, the concepts conveyed are clear, the material presented is comprehensive, the language adheres to the General Guidelines for Indonesian Spelling, the sentences used are easily understandable, the language used is free from ambiguity, the colors, text, and images used are harmonious, the font types and sizes used are appealing and legible, and the narration in the video is clear.

The validation results of the product indicate that the developed learning video has been deemed valid for use as a learning media. However, since this research only progressed up to the product creation stage, further studies are needed to ascertain the effectiveness of the developed learning video for educational purposes.

5. References

Aiken, L. R. (1985). Three coefficients for analyzing the reliability and validity of ratings. *Educational and Psychological Measurement*, 45(1), 131–142.

Anggraini, L., Lestari, S. R., & Handayani, N. (2019). Pengembangan multimedia interaktif biologi berbasis Adobe Flash CS6 pada materi sistem sirkulasi manusia kelas XI MIPA SMA Nasional Malang. *Jurnal Pendidikan Biologi Universitas Negeri Malang*, 10(2), 85–91.

Anggraini, W., Anwar, Y., & Madang, K. (2016). Pengembangan lembar kerja peserta didik (LKPD) berbasis learning cycle 7E materi sistem sirkulasi pada manusia untuk kelas XI SMA. *Jurnal Pembelajaran Biologi: Kajian Biologi Dan Pembelajarannya*, 3(1), 49–57.

Arofah, M., & Raharjo. (2017).

- Development of student worksheets based on problem-based learning to improve learning outcomes in the material of the human circulatory system. *BioEdu*, 6(4), 204–214.
- Aswadin, A., Azmin, N., & Bakhtiar, B. (2021). Keefektifan penerapan metode simulasi pada konsep sistem peredaran darah manusia di kelas VIII SMPN 8 Satap Soromandi tahun pelajaran 2021/2022. *Jurnal Pendidikan Ilmu Pengetahuan Alam (JP-IPA)*, 2(2), 6–10.
- Atika, D., Nuswowati, M., & Nurhayati, S. (2018). Pengaruh metode discovery learning berbantuan video terhadap hasil belajar kimia siswa SMA. *Jurnal Inovasi Pendidikan Kimia*, 12(2), 2149–2158
- Awaludin, A., Prayitno, H. J., & Haq, M. I. (2022). Using Digital Media During the COVID-19 Pandemic Era: Good Online Program in Higher Education. *Indonesian Journal on Learning and Advanced Education (IJOLAE)*, 5(1), 1–12. https://doi.org/10.23917/ijolae.v5i1.195
- Basuki, A. (2020). Sistem pendidikan bagi generasi Z (gen Z). *Jurnal Lingkar Widyaiswara*, 7(01), 43–55.
- Bhosale, S. S., Salunkhe, A., & Surve, F. (2020). Influence of modern technology in education. *Aayushi International Interdisciplinary Research Journal*, 77, 219–222.
- Bucăța, G. (2023). Challenges at the educational level in the teaching and training of generation "Z." *Land Forces Academy Review*, 28(4), 265–276. https://doi.org/10.2478/raft-2023-0031
- Devega, A. T., Giatman, M., Zulatama, A., & Ropianto, M. (2022). Aplikasi media pembelajaran interaktif sistem peredaran manusia berbasis darah android pada sekolah dasar. **JTEV** (Jurnal Teknik Elektro Dan Vokasional), 8(1), 117–127.
- Dewi, S. L., Kurniawan, D. T., & Sukardi, R. R. (2024). Development of Interactive

- Content in Website Learning Media To Address Student Misconceptions About the Greenhouse Effect. *Jurnal Pendidikan Matematika Dan IPA*, 15(1), 91. https://doi.org/10.26418/jpmipa.v15i1.7 1582
- Emilia, I., Setiawan, A. A., Novianti, D., Mutiara, D., & Rangga. (2023). Skrining Fitokimia Ekstrak Daun Sungkai. *Jurnal Ilmiah Medicamento*, 5(2), 44–59.
- Fitri, F., & Ardipal, A. (2021). Pengembangan video pembelajaran menggunakan aplikasi Kinemaster pada pembelajaran tematik di sekolah dasar. *Jurnal Basicedu*, *5*(6), 6330–6338. https://doi.org/10.31004/basicedu.v5i6. 1387
- Fuadi, D., Harsono, H., Syah, M. F. J., Susilo, A., Suhaili, S., & Wahyono, B. (2021). Self-Governance: Internationalization Management of Distinctive Higher Education Towards The World Class University. *Indonesian Journal on Learning and Advanced Education (IJOLAE)*, 3(2), 96–113. https://doi.org/10.23917/ijolae.v3i2.117 54
- Gazali, Z., & Nahdatain, H. (2019). Pengembangan media pembelajaran berbasis video pada materi biologi sel untuk siswa SMA/MA kelas XI IPA. *Jupe: Jurnal Pendidikan Mandala*, 4(5), 236–238.
 - https://doi.org/10.58258/jupe.v4i5.867
- Gustinasari, M., Lufri, & Ardi. (2017). Pengembangan Modul Pembelajaran Berbasis Konsep Disertai Contoh pada Materi Sel untuk Siswa SMA. *Bioeducation Journal*, 1(1), 2354–8363.
- Gustinasari, K., Hermana, J., & Pandebesie, E. S. (2019). Water Bodies Quality along Paddy Field in Karang Ploso Sub District, Malang City, Indonesia. In *E3S Web of Conferences* (Vol. 125, p. 04007). EDP Sciences.
- Hakim, L. (2017). Pengembangan media video pembelajaran untuk mengembangkan karakter disiplin siswa

- di SDN Adisucipto 02. E-Jurnal Skripsi Mahasiswa TP, 6(8), 777–787.
- Handayani, S. (2021). *Anatomi dan fisiologi tubuh manusia*. CV. Media Sains Indonesia.
- Harefa, F., Yogica, R., Atifah, Y., & Gumarni, T. (2023). Hasil Validitas Pengembangan Media Pembelajaran Video Animasi Menggunakan Adobe Flash Sebagai Suplemen Praktikum Uji Kandungan Makanan Untuk Peserta Didik SMA. *Biodik*, 9(2), 135–142. https://doi.org/10.22437/biodik.v9i2.21
- Hasni, E., Kusasi, M., Terapan, R. P.-J. P. S. dan, & 2022, U. (2022). Pengembangan Media Pembelajaran Interaktif Menggunakan Articulate Storyline pada Materi Litosfer untuk Peserta Didik SMP. Ppjp.Ulm.Ac.IdE Hasni, M Kusasi, RF PutriJurnal Pendidikan Sains Dan Terapan, 2022•ppjp.Ulm.Ac.Id, 2(1), 2022.
- Iftode, D. (2020). Generation Z and learning styles. Sea Practical Application of Science, 7(21), 255–262. https://doi.org/10.2139/ssrn.3518722
- Ilesanmi, A. (2023). Teaching and learning with instructional videos: Issues and concerns for educational practice. *International Journal of Instructional Technology and Educational Studies*, 4(1), 1–6. https://doi.org/10.21608/ihites.2022.121 271.1110
- Indrayani, I. G. A. P. U., Astawan, I. G., & Sumantri, M. (2021). Media Pembelajaran Audio Visual Berorientasi Nilai Karakter pada Materi Siklus Air. *MIMBAR PGSD Undiksha*, 9(2), 238. https://doi.org/10.23887/jjpgsd.v9i2.361
- Irawan, A., Sihkabuden, & Sulthoni. (2017). Pengembangan media video pembelajaran biologi pembuatan tempe dan yoghurt. *Kinabalu*, 11(2), 50–57.
- Isnanto, I. (2022). Hasil Belajar Siswa Ditinjau Dari Gaya Belajar. *Aksara: Jurnal Ilmu Pendidikan Nonformal*, 8(1), 547.

- https://doi.org/10.37905/aksara.8.1.547-562.2022
- Juniawati, L. A., & Trimulyono, R. P. P. dan G. (2016). Validitas Media Video Pada Materi Siklus Hidup Jamur Kelas X Sma. *BioEdu*, 5(3), 248758.
- Kristanto, A. (2016). Media pembelajaran. In *Bintang Surabaya*.
- Kumontoy, G. D., Deeng, D., & Mulianti, T. (2023). Vol. 16 No. 3 / Juli September 2023. Pemanfaatan Tanaman Herbal Sebagai Obat Tradisional Untuk Kesehatan Masyarakat Di Desa Guaan Kecamatan Mooat Kabupaten Bolaang Mongondow Timur, 16(3), 1–20.
- Luzyawati, L., & Lissa, L. (2020). Pengembangan Buku Ajar Biodiversitas Berbasis Kajian Etnobiologi Suku Dayak Losarang. *Jurnal Pendidikan Matematika Dan IPA*, 11(1), 173–184. https://doi.org/10.26418/jpmipa.v11i1.3 7598
- Magdalena, I., & Afifah, A. N. (2020). Identifikasi gaya belajar siswa (visual, auditorial, kinestetik). *Pensa: Jurnal Pendidikan Dan Ilmu Sosial*, 2(1), 1–8.
- Mashuri, D. K., & Budiyono. (2020).

 Pengembangan Media Pembelajaran
 Video Animasi Materi Volume Bangun
 Ruang untuk SD Kelas V. *Jurnal*Penelitian Pendidikan Guru Sekolah
 Dasar, 8(5), 893–903.
- Matsun, M., Darmawan, H., & Fitriyanti, L. (2019). Pengembangan Media Pembelajaran Fisika Berbasis Macromedia Flash Topik Bahasan Pesawat Sederhana. *Jurnal Pendidikan Matematika Dan IPA*, 10(1), 30. https://doi.org/10.26418/jpmipa.v10i1.2 5861
- Munafiah, A. S. (2023). Pengembangan Media peredaran darah berbasis 3 dimensi untuk meningkatkan hasil belajar siswa materi sistem peredaran darah manusia dalam mata pelajaran IPA kelas V semester I di MI Da'watul Khoir Kedungringin Nganjuk. IAIN Kedii.
- Munir, N. S., Gani, H. A., & Mappalotteng, A. M. (2022). Pengaruh Media

86

- Pembelajaran E-Learning, Gaya Belajar, Dan Motivasi Belajar Terhadap Hasil Belajar Siswa Pada Mata Pelajaran Simulasi Dan Komunikasi Digital Kelas X Di Smk Negeri 2 Pinrang. *UNM Journal of Technology and Vocational*, 6(1), 25. https://doi.org/10.26858/ujtv.v6i1.3428
- Nurwahidah, C. D., Zaharah, Z., & Sina, I. (2021). Media video pembelajaran dalam meningkatkan motivasi dan prestasi mahasiswa. *Rausyan Fikr: Jurnal Pemikiran Dan Pencerahan*, 17(1), 118–139. https://doi.org/10.31000/rf.v17i1.4168
- Onojah, A. A., Onojah, A. O., Olumorin, C. & O. Omosewo, E. (2021).Secondary School Teachers' Accessibility to Internet Facilities for Instruction in Advanced Nigeria. Indonesian Journal on Learning and Advanced Education (IJOLAE), 3(2), 86–95. https://doi.org/10.23917/ijolae.v3i2.106
- Panjaitan*, R. G. P., Titin, T., & Wahyuni, E. S. (2021). Kelayakan Booklet Inventarisasi Tumbuhan Berkhasiat Obat sebagai Media Pembelajaran. *Jurnal Pendidikan Sains Indonesia*, 9(1), 11–21. https://doi.org/10.24815/jpsi.v9i1.17966
- Panjaitan, R. G. P., Maulidya, A., & Yokhebed, Y. (2022). Kelayakan media flash flipbook pada submateri darah. *Jurnal Pendidikan Informatika Dan Sains*, 11(2), 77–87. https://doi.org/10.31571/saintek.v11i2.2 643
- Popova, A., Kirschner, P. A., & Joiner, R. (2014). Effects of primer podcasts on stimulating learning from lectures: How do students engage? *British Journal of Educational Technology*, 45(2), 330–339. https://doi.org/10.1111/bjet.12023
- Purwoko, Thamrin, H., & Rachmad, Y. (2022). Perbandingan Efek Asam Traneksamat, Etamsylate dan Kombinasi dengan Profil Waktu

- Perdarahan pada Operasi Sedang. Jurnal Anestesi Perioperatif, 10(1), 10– 16
- https://doi.org/10.15851/jap.v10n1.2461 Retnawati, H. (2016). *Analisis kuantitatif instrumen penelitian*. Parama Publishing.
- Reza, F., & Tinggogoy, F. L. (2022). Konflik generasi z di bidang pendidikan di era revolusi industri 4.0 tantangan dan solusinya. *Paradigma: Jurnal Administrasi Publik*, 1(2), 142–155. https://doi.org/10.55100/paradigma.v1i2
- Safitri, A., Noorhidayati, & Amintarti, S. (2021). Pengembangan bahan ajar konsep sistem peredaran darah manusia biologi SMA dalam bentuk booklet digital. *BIOMA: Jurnal Biologi Dan Pembelajarannya*, 3(2), 13–30. https://doi.org/10.31605/bioma.v3i2.12 46
- Salamah, Z., Selawati, & Sasongko, H. (2020). DEVELOPMENT OF RESEARCH-BASED BIOLOGICAL MODULES ON CHARACTERISTICS OF LEAVES EPIDERMIS AND ITS DERIVATIVES OF Solanum lycopersicum var. Cerasiforme and Solanum lycopersicum cv. Ranti FOR HIGH SCHOOL STUDENTS. Jurnal Pendidikan Matematika Dan Ipa, 11(1), 13–21.
- Salsabila, U. H., & Agustian, N. (2021).

 Peran teknologi pendidikan dalam pembelajaran. *Islamika: Jurnal Keislaman Dan Ilmu Pendidikan*, 3(1), 123–133.

 https://doi.org/10.36088/islamika.v3i1.1
- Saputri, A., Sukirno, S., Kurniawan, H., & Probowasito, T. (2020). Developing Android Game-Based Learning Media "Go Accounting" in Accounting Learning. *Indonesian Journal on Learning and Advanced Education* (*IJOLAE*), 2(2), 91–99. https://doi.org/10.23917/ijolae.v2i2.999
- Setiawan, H. C., Nugroho, W., & Rofi, H. A.

- (2022). The importance of video as learning media according to principle of media production "visuals." *Injurity: Interdiciplinary Journal and Hummanity*, 1(3), 92–97. https://doi.org/10.58631/injurity.v1i3.24
- Sidrotullah, M. S. (2021). Efek waktu henti pendarahan (bleeding time) daun bandotan (Ageratum conyzoides L.) pada mencit (Mus musculus). *Journal Syifa Sciences and Clinical Research*, 3(1), 37–44. https://doi.org/10.37311/jsscr.v3i1.9909
- Sofian, M. R., & Rahmat. (2023). Psikoedukasi pentingnya mengetahui gaya belajar siswa. *Abdi Jurnal Pengabdian Mahasiswa*, 2(2), 5851–5857.
- Sugiyono. (2021). Metode Penelitian Pendidikan (Kuantitatif, Kualitatif, Kombinasi, R&D dan Penelitian Pendidikan). Alfabeta.
- Sulistyanto, H., Anif, S., Sutama, S., Narimo, S., Sutopo, A., Haq, M. I., & Nasir, G. A. (2022).Education Perspective Application **Testing** Students' Empower Higher Order Thinking Skills Related to The Concept Learning Adaptive Media. Indonesian Journal on Learning and Advanced Education (IJOLAE), 4(3), 257-271.
 - https://doi.org/10.23917/ijolae.v4i3.194 32
- Sutopo, T., Bestari, R. S., & Sintowati, R. (2016). Uji Ekstrak Etanol 70% Daun Sirih (Piper betle L.) terhadap Bleeding Time pada Mencit Jantan Galur Swiss Webster. *Biomedika*, 8(2). https://doi.org/10.23917/biomedika.v8i2 .2917
- Syuaib, S., Adnan, & Ali, A. (2018). Biology learning video development as a learning resource of biology participants in SMA Class XI IPA. *Prosiding Seminar Nasional Biologi Dan Pembelajarannya*, 383–388.

- Urba, M., Ramadhani, A., Afriani, A. P., & Suryanda, A. (2024). *Generasi Z: Apa gaya belajar yang ideal di era serba digital?* 3(1), 50–56.
- Wahyuni, S. (2020). Pengembangan media video pembelajaran pada mata pelajaran biologi kelas XI SMA Negeri 5 Jeneponto. Universitas Negeri Makassa.
- Wangkanusa, V., Moko, E. M., Rawung, L. D., Tumbel, F. M., Lihiang, A., & Rahardiyan, D. (2023). Pengembangan dan validasi video pembelajaran berbasis eksperimen hematologi pada Rattus novergicus dalam materi sistem sirkulasi di SMA. *Jambura Edu Biosfer Journal*, 5(1), 15–21. https://doi.org/10.34312/jebj.v5i1.1786
- Yalcin-Incik, E., & Tolga-Incik. (2022). Generation Z students' views on technology in education: What they want what they get. *Malaysian Online Journal of Educational Technology*, 10(2), 109–124. https://doi.org/10.52380/mojet.2022.10. 2.275
- Yudha, S., Nurfajriani, & Silaban, R. (2020). Implementation of android-based interactive multimedia on atom materials learning structure on and student motivation. outcomes Jurnal Pendidikan Matematika Dan 259-270. 14(2),https://doi.org/http://dx.doi.org/10.2641 8/jpmipa.v14i2.60166
- Yusuf, E. (2016). Pembelajaran berbasis teknologi untuk generasi Z. *Widyakala*, 3, 44–48.
- Zulfariyanti, M., Fitriani, V., & Sari, L. Y. (2022). Pengembangan Media Video Materi Model Pembelajaran Kooperatif pada Mata Kuliah Strategi dan Desain Pembelajaran Biologi. *Jurnal Pendidikan Dan Konseling*, 4, 1349–1358.