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Abstract — Hand motor limitations often hinder individuals from expressing their musical creativity, particularly those
affected by neurological disorders, musculoskeletal injuries, or playing-related musculoskeletal disorders. Such impairments
restrict access to traditional instruments and highlight the need for alternative modes of musical interaction. This study
addresses the problem by designing an interactive musical instrument based on surface electromyography (EMG), enabling
the conversion of forearm muscle activity into digital notes via a Musical Instrument Digital Interface (MIDI) controller
in real time. The system integrates a Muscle Sensor v3, Arduino Uno, and Python-based software with a graphical user
interface. The processing pipeline includes EMG signal acquisition, feature extraction using three time-domain features—
Mean Absolute Value (MAV), Root Mean Square (RMS), and Waveform Length (WL)—and gesture classification with
a Decision Tree algorithm implemented in scikit-learn. Classified gestures are then mapped to MIDI note values and
transmitted to a Digital Audio Workstation (DAW) for sound production. Experimental evaluation was conducted on eight
hand gesture classes. For each class, 20 repetitions were used for training, and 10 for testing, resulting in 80 independent
test trials. The system achieved an overall accuracy of 82.5%, with 66 correct predictions out of 80. Simple gestures such as
Hand Open and Index Bend reached 100% accuracy, while gestures with overlapping muscle activation patterns, notably
Form Number 1 and Form Number 2, achieved only 60%. These results indicate that Decision Trees, while computationally
efficient and interpretable, face limitations when handling non-linearly separable data. Nonetheless, the study demonstrates
the feasibility of using Decision Trees as a lightweight baseline for real-time EMG-based musical interfaces. Future work
may involve multi-subject, multi-channel EMG datasets and advanced classifiers such as Support Vector Machines (SVM)
or Artificial Neural Networks (ANN). This research contributes to inclusive and adaptive digital musical technologies for

individuals with motor impairments.
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I. INTRODUCTION

USICAL performance relies heavily on fine mo-
tor control, an ability that can be compromised
by conditions such as stroke, nerve injury, muscular
dystrophy, arthritis, or Playing-Related Musculoskele-
tal Disorders (PRMDs). PRMDs represent a signifi-
cant concern, with prevalence rates reported at 34-87%
among professional musicians and 34-62% among stu-
dents [1], with some systematic reviews reaching as
high as 80-90% [2]. Such impairments restrict creative
performance and directly impact musicians’ ability to
engage with their instruments.
Electromyography (EMG) has long been applied
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in diagnosing and rehabilitating music-related injuries
[3] while also enabling alternative musical interfaces
that bypass physical limitations and open new possibil-
ities for interaction [4,5]. EMG records electrical ac-
tivity of muscles through surface electrodes, capturing
signals that directly reflect motor intent. Compared to
EEG, EMG provides more robust and volitional control
for real-time interaction [6], making it particularly at-
tractive for Digital Musical Instruments (DMIs) aimed
at musicians with impaired motor function [7].

The field of EMG-based gesture recognition has
advanced through the use of machine learning, includ-
ing Random Forests [8], Support Vector Machines
(SVM) [9], and various Artificial Neural Network
(ANN) architectures—including RNNs and CNNs—
that have consistently demonstrated high classification
performance, often exceeding 90%. For example, ANN
models have reported 94.0% accuracy in finger gesture
classification [10], real-time ANN systems achieving
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98.7% [11], and Random Forests demonstrating 98.7%
accuracy for seven hand gestures [12]. However, their
high computational demands limit practicality for real-
time, low-power, or wearable systems [13]. Meanwhile,
Decision Tree has also been applied in biomedical ex-
pert systems such as disease diagnosis, proving its value
as a lightweight and interpretable model [14].

This research addresses that gap by evaluating
the Decision Tree algorithm as a lightweight and inter-
pretable baseline for EMG gesture classification. The
emphasis is not on maximizing accuracy but on investi-
gating the trade-off between computational efficiency
and classification performance. The objectives of this
study are twofold: (1) to design and implement an inter-
active musical instrument that translates forearm EMG
signals into real-time MIDI notes, and (2) to evaluate
the feasibility of the Decision Tree method in enabling
expressive digital music creation for inclusive and adap-
tive musical technologies.

II. RESEARCH METHODS

This section presents the methodology used to develop
and evaluate the EMG-based interactive musical in-
strument. The approach includes the acquisition of
EMG signals from the forearm, feature extraction to
represent muscle activity patterns, and the design and
implementation of the Decision Tree classifier for map-
ping gestures to MIDI notes. Each step is described in
detail in the following subsections.

i. System Design

The system was designed as an end-to-end workflow to
capture EMG signals from forearm muscle movements
using an EMG module (Muscle Sensor v3), process
them, and convert them into digital musical notes in
real time. Figure 1 illustrates the detailed system ar-
chitecture, which is divided into several key stages.
The process begins with the physical placement of sur-
face electrodes (non-invasive) on the forearm’s flexor
muscles to capture raw EMG signals. This signal is
then conditioned through an “Amplification & Filtering”
stage, handled by a Muscle Sensor v3.

The Muscle Sensor v3 is specifically designed for
microcontroller-based applications and integrates am-
plification, rectification, and smoothing stages, thereby
outputting a conditioned signal suitable for direct sam-
pling by the Arduino’s ADC without additional pre-
processing. Its gain is adjustable, with a theoretical
range up to 20,700 x depending on resistor configura-
tion, ensuring adequate sensitivity for forearm muscle
activity. Importantly, the module does not provide raw
EMG output but instead delivers an amplified and fil-

tered signal that has undergone full-wave rectification
and smoothing, making it more robust for downstream
digital processing [15]. Subsequently, the analog signal
undergoes “Digitalization” using the Analog-to-Digital
Converter (ADC) on an Arduino Uno, which also man-
ages “Serial Data Transmission” to a laptop.

The final stages, labeled “Processing on Laptop”,
are executed by a Python-based application. This in-
volves “Feature Extraction” from the incoming data
stream, followed by movement classification using a
pre-trained Decision Tree model, which maps EMG
features to specific hand gestures in real time. The clas-
sified gesture is then converted to MIDI commands and
sent to a Digital Audio Workstation (DAW) for sound
output. This modular architecture represents a standard
pattern in DMI development, and the chosen electrode
location is a common and effective practice for gesture
classification [16].
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Figure 1: Detailed architecture of the real-time EMG-to-
MIDI system.

Two differential electrodes (Electrodes 1 and 2)
are positioned over the target muscle group, namely
the flexor muscles, which are responsible for finger
and wrist flexion. The reference electrode (Electrode
3/Ground) is placed on a bony prominence near the
elbow to minimize common-mode noise. This configu-
ration is designed to maximize the detection of EMG
signals from the relevant muscle activity.

ii. Flowchart System

The overall workflow of the system is illustrated in
Figure 2. The process begins with the acquisition of
EMG signals from the sensor, which are first subjected
to basic filtering on the Arduino to reduce noise be-
fore transmission to the computer. On the computer
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side, feature extraction is performed to represent mus-
cle activity, followed by classification using the trained
Decision Tree model to recognize the intended gesture.
Once a stable gesture is detected, the system gener-
ates a command to play the corresponding MIDI note.
This entire sequence is executed in real time to ensure
responsive interaction between muscle activity and mu-
sical output.

Output High Do

Is the system
finished?

Figure 2: Flowchart representation of the Decision Tree
model logic.

Each internal node (e.g., RMS < 19.28) represents
a condition applied to an EMG feature. Based on the
test outcome (Yes/No), the path proceeds until reaching
a leaf node (e.g., Output Do), which corresponds to the
final classification result.
iii. Hardware Implementation
The core hardware components include the Muscle Sen-
sor v3, an Arduino Uno, and three surface electrodes.
Based on previous studies on EMG signal acquisition
for finger gestures, the electrodes were placed on the
forearm to target the Flexor Digitorum Superficialis
muscle, which is primarily responsible for finger flex-
ion and capable of producing distinct signals for various
finger movements [17]. Figure 3 illustrates the elec-
trode placement, while the detailed schematic of the
hardware configuration is shown in Figure 4.

In this system, the Muscle Sensor v3 is powered
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by a regulated dual supply (+5 V, =5 V, GND). The
negative voltage (-5 V) is generated using an ICL7660-
based voltage inverter, converting the Arduino’s +5 V
supply into a corresponding negative rail [18]. This con-
figuration provides the necessary symmetrical power
supply required for the sensor and ensures compati-
bility with components such as operational amplifiers
that demand dual polarity [19]. The sensor’s output is
connected to one of the Arduino’s analog input pins for
signal acquisition. To improve connection stability and
minimize measurement noise, the components were
integrated on a custom-designed PCB [20].
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Figure 3: Electrode placement configuration on the forearm
flexor muscles for EMG acquisition.

iv. Hardware Implementation (continued)

Two differential electrodes (Electrodes 1 and 2) are po-
sitioned over the target muscle group, namely the flexor
muscles, which are responsible for finger and wrist flex-
ion. The reference electrode (Electrode 3/Ground) is
placed on a bony prominence near the elbow to min-
imize common-mode noise. This configuration is de-
signed to maximize the detection of EMG signals from
the relevant muscle activity. The diagram 4 shows
electrode placement, signal conditioning, digitization,
feature extraction, classification, and MIDI conversion.

v.  Signal Acquisition and Feature Extraction

Data were collected from a single participant (the au-
thor), who performed eight distinct hand gestures, each
repeated 20 times, resulting in a dataset of 160 trials.
The participant was a healthy adult female, aged 22,
with no known neuromuscular disorders. While the
use of a single subject allows for controlled and con-
sistent data collection, it represents a limitation of this
study, as the findings cannot be directly generalized to
a broader population.

To prepare the raw EMG data for classification,
three time-domain features were extracted from each
signal window, which are widely recognized for their
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Figure 4: Schematics of the EMG-based interactive musical
instrument system.

effectiveness and computational simplicity in EMG

analysis [21].

1. Mean Absolute Value (MAV): An estimate of the
signal’s amplitude, indicating the overall level of
muscle activation [22].

1 N
MAV = Y |x;
N;lxtl

2. Root Mean Square (RMS): Relates to the signal’s
power and indicates muscle contraction force [22].

1 N
N

i=1

RMS =

3. Waveform Length (WL): Measures the cumula-
tive length of the waveform, reflecting its complex-
ity [21].
N—1
WL = ‘xH_l — x,-|
i=1
Here, x; represents the signal sample at time 7, and
N is the total number of samples in the window.

vi. Gesture Classification and MIDI Conversion

A Decision Tree classifier was trained using the
extracted features (MAV, RMS, WL) and corre-
sponding gesture labels, implemented with Python’s
scikit-learn library [23]. The algorithm generates a
flowchart-like structure where internal nodes represent
feature-based tests (e.g., “Is RMS < 25.567”), and leaf
nodes represent the final classification outcome (the
gesture).

Once a gesture is classified, the system maps it
to a specific MIDI note number, as shown in Table 1.

These MIDI commands are transmitted in real time to
a DAW (e.g., Virtual MIDI Piano Keyboard) via the
rtmidi library to produce the corresponding musical
note [24]. In addition, a custom GUI developed in C#
with WPF provides real-time visualization of the EMG
signal, the predicted note, and the associated gesture
image.

Table 1: Mapping of Hand Gestures to MIDI Note Numbers

Musical MIDI
No.  Gesture Image Nofe Value

j, ~ Hand g% Do 60
Open
Index “

2. Bend v Re 62
Ring .

3. Bend %’ Mi 64

Middle &

4, Ring L Fa 65
Bend
Form

> Number 2 ¥ Sol 67
Form

6. Number 1 & La 69
Wrist

7. Flexion N Si 71

Up

Hand .

8. Clench ? High Do 73

ITI. RESULTS AND DISCUSSION

The system’s performance was evaluated through two
main tests: feature analysis and classification accuracy.

i. Feature Extraction Analysis

The average values of the extracted features (MAYV,
RMS, and WL) for each of the eight gestures are pre-
sented in Table 2. The results show a clear trend where
more intensive muscle contractions yield higher fea-
ture values. The “Hand Clench” gesture produced the
highest values across all three features, indicating the
strongest muscle activation. Conversely, the “Hand
Open” gesture, representing a relaxed or minimally
active state, had the lowest values. This progressive
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increase in feature values from gesture 1 to 8 confirms
that the selected features effectively capture varying
levels of muscle intensity, which is crucial for the clas-
sifier to distinguish between different movements.

Table 2: Average Feature Values for Each Gesture

No. Gesture MAV RMS WL
1 Hand Open 12.41 1271 1001.78
2 Index Bend 23.06 23.59 1714.32
3 Ring Bend 27.89  28.57 1995.92
4  Middle & Ring Bend 32.73  33.46 2207.74
5  Form Number 2 46.97 4831 3329.79
6  Form Number 1 55.14 57.21 3988.03
7 Wrist Flexion Up 64.64 67.71 5155.51
8  Hand Clench 104.23 107.21 7117.25

ii.  Classification Accuracy

To assess the precision of the Decision Tree model,
each of the eight gestures was performed 10 times,
for a total of 80 trials. The system’s predictions were
recorded and compared against the actual gestures per-
formed. The results are summarized in Table 3. The
system achieved an overall accuracy of 82.5%, cor-
rectly identifying 66 out of 80 gestures.

Table 3: Confusion Matrix for Eight-Gesture Classification

Do Re Mi

Do (Hand Open) 10 O 0
Re (Index Bend) 0 10
Mi (Ring Bend) 1
Fa (Middle & Ring)
Sol (Form No. 2)

La (Form No. 1)

Si (Wrist Flexion Up)
High Do (Clench)

Fa
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iii.  Discussion

The results show that the Decision Tree classifier
achieved an overall accuracy of 82.5%. As indicated
in Table 3, gestures with distinct activation patterns,
such as “Hand Open,” “Index Bend,” and “Middle &
Ring Bend,” were consistently classified with 100%
accuracy. However, the gestures “Form Number 1~ and
“Form Number 2” exhibited the lowest accuracy at 60%,
frequently being misclassified as one another.

This misclassification can be explained by the sim-
ilarity of their feature values. As shown in Table 2, the
MAV, RMS, and WL values of “Form Number 1” and
“Form Number 2” are relatively close, reflecting highly
overlapping EMG patterns. This overlap reduces the
ability of a Decision Tree to distinguish between the
two classes, as the algorithm partitions the feature space

using axis-parallel splits [25]. When the optimal de-
cision boundary is curved or diagonal, the Decision
Tree’s hyper-rectangular regions result in coarse ap-
proximations and errors near the class boundary.

When compared with related studies, the achieved
accuracy is modest. For instance, Di Maggio et al. [12]
reported 98.7% accuracy for seven hand gestures using
a Random Forest classifier, underscoring the advan-
tages of ensemble methods in modeling complex distri-
butions. Similarly, ANN-based systems have achieved
accuracies exceeding 95% [10,11]. These findings high-
light the deliberate trade-off in this study, prioritizing
computational efficiency and interpretability over maxi-
mum accuracy. Such trade-offs are valuable in contexts
where low-latency and lightweight implementation are
critical, such as embedded or wearable devices.

While the overall accuracy of 82.5% is modest
compared to state-of-the-art approaches, this outcome
reflects the deliberate design choice of employing a
single-channel EMG setup and a Decision Tree clas-
sifier. The intention of this work is not to achieve the
maximum possible accuracy, but rather to demonstrate
a lightweight and interpretable baseline system suitable
for real-time, low-latency applications. The Decision
Tree offers transparent classification rules, making it
easier to trace errors and optimize system design in the
early development stage.

The most notable source of error was the fre-
quent misclassification between “Form Number 1” and
“Form Number 2.” As discussed, these gestures pro-
duce overlapping EMG patterns that are difficult to
separate using time-domain features alone. This limi-
tation indicates the potential benefits of incorporating
frequency-domain descriptors, dimensionality reduc-
tion techniques such as Principal Component Analy-
sis (PCA) or Linear Discriminant Analysis (LDA), or

Figure 5: Real-time system demonstration showing the
EMG hardware setup connected to Arduino and
the GUI interface displaying signal visualiza-
tion, predicted gesture, and corresponding mu-
sical note.
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additional sensor channels in future studies. Such ap-
proaches could improve discriminability without com-
promising computational efficiency.

Furthermore, the evaluation was conducted on a
single subject with limited repetitions. This scope was
intentionally restricted to maintain system simplicity
and to validate the feasibility of the pipeline. While this
design limits generalizability, it establishes a proof-of-
concept that can be extended in subsequent work with
richer datasets and more robust validation protocols.

As this study involved human data collection, eth-
ical approval was not required for a single-subject de-
sign; however, informed consent was obtained in ac-
cordance with the Declaration of Helsinki [26]. To
further demonstrate the feasibility of the proposed sys-
tem, Figure 5 shows the real-time implementation of
the EMG-based musical instrument, where the hard-
ware setup and GUI interface visualize the extracted
EMG signals, predicted gestures, and corresponding
musical notes.

iv. Training and Testing Process

A dataset of 20 repetitions per gesture was collected
and used to train the Decision Tree classifier. To eval-
uate the model, an additional set of 10 repetitions
per gesture—collected separately from the training
dataset—was used for testing, resulting in 80 inde-
pendent test trials. This ensured that evaluation was
performed on data not seen during training. The Deci-
sion Tree was implemented using the scikit-learn
library in Python.

v.  Ethical Considerations

This study involved the acquisition of surface EMG
signals from a human participant. Informed consent
was obtained prior to data collection, and all proce-
dures were conducted in accordance with the ethical
principles outlined in the Declaration of Helsinki [26]
and standard guidelines for non-invasive human-subject
research.

IV. CONCLUSION

This study presented the design and implementation
of an EMG-based interactive musical instrument that
converts forearm muscle activity into real-time MIDI
notes using a Decision Tree classifier. With an overall
accuracy of 82.5%, the system demonstrated feasibil-
ity as an alternative musical interface and established
a baseline where computational efficiency and inter-
pretability are prioritized over peak accuracy. Although
modest compared to state-of-the-art methods, the ac-

curacy reflects a deliberate choice of a single-channel
setup and a lightweight model for real-time use. The
main limitation was frequent misclassification between
“Form Number 1 and “Form Number 2.,” caused by
overlapping EMG patterns and the restricted use of
time-domain features.

The study’s constraints—single subject, single
muscle, and three-electrode configuration—Ilimit gener-
alizability but serve as proof-of-concept. Future work
should include multi-subject validation, multi-channel
acquisition, and more advanced classifiers such as Sup-
port Vector Machines (SVMs) or Artificial Neural Net-
works (ANNs), alongside ensemble methods like Ran-
dom Forests for baseline comparison. Additional di-
rections include applying signal denoising, exploring
cross-subject generalization, and embedding the system
into wearable platforms for practical performance.

As noted by Pedrosa and Costa [24], EMG-based
MIDI controllers represent a growing research direc-
tion, and building on this baseline can advance inclu-
sive and adaptive digital musical technologies for both
artistic and assistive use.
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