

# **Pectin Extraction from Various Sources: A Literature Review**

Vira Triyatna<sup>1</sup>, Fetriyuna<sup>2</sup>, Miftakhur Rohmah<sup>1\*</sup>

<sup>1</sup>Department of Agricultural Product Technology, Faculty of Agriculture, Mulawarman University, Indonesia <sup>2</sup>Department of Technology Industry Food, Faculty of Technology Industry Agriculture, University Padjadjaran, Indonesia

\*Corresponding e-mail: miftakhurrohmah@faperta.unmul.ac.id

Received: 9 May 2025, Revised: 01 August 2025, Available Online: 11 August 2025

Abstrak - Plant cell walls include a complex polymer called pectin, which combines methoxyl with galacturonic acid to produce a gel. Applications for pectin are found in both the food and non-food industries. It is utilized as an edible coating, gel-forming, texture enhancer, stability enhancer, and appearance enhancer in the food industry. Pectin can be combined with other ingredients to make non-food products. For example, pectin, chitosan, carboxymethyl cellulose (CMC), and alginate can be used to make biocomposites for wound dressings. Other sources of pectin include aloe vera, biosorbent, banana peel, corn starch, albedo watermelon, nutmeg, pumpkin, and dragon fruit skin. The properties of pectin are generally determined by its yield, equivalent weight, methoxyl content, galacturonic acid content, and degree of esterification. The two most common methods used to extract pectin are chemical and mechanical. Typically, chemical processes use solvents and mechanical techniques to combine liquid and solid components.

Keywords: Pectin, extraction, application

### **INTRODUCTION**

Plant cell walls include a complex polymer called pectin. A hydrocolloid substance that is frequently utilized in the food and beverage sector is pectin (Cahyanto, 2017). Pectin is utilized as a stabilizer in the food, beverage, and pharmaceutical sectors because it can form colloids and gels in solution (Puspitasari, 2017). According to Almatsier's (2014) research, pectin is a water-soluble fiber that has the ability to lower liver and blood cholesterol levels. Bioactive characteristics of pectin include anti-tumor, anti-inflammatory, antioxidant, anti-diabetic, anti-cancer, and chemopreventive effects. Additionally, it preserves the stability of plant tissues and cells and functions as an adhesive. Pectin contains galacturonic acid and methoxyl, which make it form a gel. High methoxyl pectin is generally used in food products like pudding, jam, and jelly. Conversely, low-methoxyl pectin is frequently employed as a coating agent (Megawati, 2014). The primary structural component of pectin is galactofuronic acid. The structure and texture of pectin are influenced by the amount of galacturic acid present (M. Hindun Pulungan, 2015). Applications for pectin are found in both the food and non-food industries. It is employed in the food and beverage industry as an edible coating and to enhance the texture, stability, and appearance of goods. In the non-food sector, on the other hand, it finds application in the pharmaceutical business for the production of medications, bandages, and cosmetics (Susanti et al., 2017).

Previous research has proven that several food sources can be used as ingredients for making *edible films*, such as aloe vera, biosorbents, banana peels, corn starch, durian albedo pectin, watermelon albedo pectin, grapefruit, grapefruit peel (A et al., 2024)and dragon fruit skin. Food viscosity, stability, texture, and appearance are all influenced by pectin. According to Nurhayati et al. (2016), pectin is also used to create gels and stabilize fruit juices, jellies, and marmalade. According to research by Wanda et al. (2023), pectin and chitosan were combined with additives to create wound dressings that may enhance their chemical and physical characteristics. The bubble



cavity will expand and the number of bubbles on the wound dressing's surface will decrease as more additives are added. This is due to the enhanced properties of additives. Extraction is a method for separating one component of a mixture from a solid or liquid using a solvent (Widjanarko, 2017). The level of effectiveness of extraction of a compound due to a solvent depends on the solubility of the compound in the solvent. This is by the principle *that dissolves* meaning that compounds will dissolve in solvents of the exact nature. In pectin extraction, changes occur in pectin compounds caused by the protopectin hydrolysis process. This process causes protopectin to change into pectinate (pectin) by heating in acid at a specific temperature and extraction time. If hydrolysis continues, the pectin compound will turn into concentrated acid (Hossain et al., 2024).

There are several techniques for extracting pectin, one of which is the use of hydrochloric acid with microwave-assisted extraction (MAE) (Prasetyo et al., 2023). Nadir & Risfani (2018) discovered the ideal ingredient-to-solvent ratio when extracting cocoa shells using the MAE method. This resulted in changes to the solvent-to-yield ratio, water content, ash content, equivalent weight, methoxyl content, galacturonate content, and degree of esterification, all of which met IPPA's quality standards. Purwanto (2014) isolated the zinggiberene component from ginger oil and found similar results. The extract yield decreased as a result of this extraction at a greater power. According to Purwanto (2014), the energy in MAE affects the rate of the extraction process and the pectin's evaporation.

## **MATERIALS AND METHODS**

A literature review methodology was used to comprehend the effects of pectin extraction from diverse sources that are now available. Keyword combinations like "Pectin" and "Extraction" and "Application" and "Source" were utilized in the literature search. The inclusion criteria that determined the selection of these documents were: (1) full-text publications from online journals; (2) publishing in English or Indonesian; (3) article relevance to the research objectives; and (4) research on pectin extraction. The last ten years' worth of literature from the Journals-SINTA database, Google Scholar (scholar.google.com), and Scopus (Elsevier. com) were searched for using the keywords that were chosen. Every article that matches the search parameters for the literature is compiled into a table, and pertinent research findings are then used to drive the discussion.

### **RESULT AND DISCUSSION**

Pectin is used in terms of viscosity, stability, texture, and appearance of food (Nurhayati et al., 2016). Pectin is also used to form gels and stabilizers in fruit juices and as an ingredient for *jelly*, jam, and marmalade. According to research, pectin is applied to make *edible films* for products, including wrapping for sausages, fruit, and candy. In Suryati's (2021) research, chitosan has interesting properties, making it suitable for use in biomedical and pharmaceutical applications, where it is considered a significant antimicrobial agent for wound healing. Pectin is employed as a stabilizer in the food and pharmaceutical industries (Devianti et al., 2020). Putri et al. (2020) found that pectin serves as an adhesive and preserves the stability of plant cell tissue, among other uses. Pectin is also useful as a gelling agent, fruit juice stabilizer, key component in fruit jam, and extra thickener in fermented foods and dairy products. Pectin is a stabilizer and



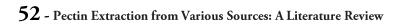
emulsifier utilized in food goods, pharmaceutical substances, and cosmetics across multiple industries (Susanti et al., 2017).

|    | Tabel 1. Summary of pectin extraction applications |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |  |
|----|----------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
|    | Source of                                          |                                                                                            | Characteristics of the                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |  |
| No | Hydrocolloids                                      | Solvent Used                                                                               | Pectin Products                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reference                    |  |
|    | Trydroconoids                                      |                                                                                            | Produced                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |  |
|    | Dry shelled corn                                   | This research uses a sodium bicarbonate solution.                                          | This study concludes<br>that the Srikandi Putih<br>variety obtained the<br>highest starch yield<br>and starch content and<br>the Palakka and Krisna<br>varieties the lowest.                                                                                                                                                                                                                                                                                                   | (Firmansyah<br>et al., 2014) |  |
|    | Jackfruit Waste                                    | Ammonium, sodium<br>hexametaphosphate,<br>oxalate, and diluted<br>sulfuric acid.           | Waste jackfruit has the potential to yield highly esterified pectin. Without significantly altering the pectic structure, the extraction conditions and type of solvent had a considerable impact on the yield and physicochemical attributes.                                                                                                                                                                                                                                 | (Begum et al.,<br>2014)      |  |
|    | Grapefruit peel                                    | Subcritical water, hot<br>water extraction, and<br>the help of a chelator<br>(citric acid) | The Mw and DM of pectin were enhanced and lowered, respectively, by chelator-assisted extraction and subcritical water treatment. Citric acid extraction can be used to produce pectin with high HG and low RG-I domains. Bacteroides and Prevotella 9 were shown to be more abundant in relation to grapefruit pectin, which also induced the synthesis of SCFAs, particularly acetic acid. The pectin derived from subcritical water extraction has the potential to be more | (Kaya et al.,<br>2014)       |  |

|   | × |   |  |   |
|---|---|---|--|---|
| _ |   |   |  | 7 |
| _ |   | 1 |  | , |
|   |   |   |  |   |

| No | Source of<br>Hydrocolloids                                  | Solvent Used                                                                                 | Characteristics of the<br>Pectin Products<br>Produced                                                                                                                                                                                                                                                                   | Reference                   |
|----|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|    |                                                             |                                                                                              | fermentable and prebiotic. One potential new tool for influencing gut microbiota in the direction of a                                                                                                                                                                                                                  |                             |
|    |                                                             |                                                                                              | functionally sound<br>diet is grapefruit<br>pectin.                                                                                                                                                                                                                                                                     |                             |
|    | Banana Peels and<br>Banana Bunches                          | Strong Acid (HCl)                                                                            | The water content ranges from 8.14 to 9.05%, the whiteness from 26.94 to 29.27, and the pectin content from 1.52 to 5.39%.                                                                                                                                                                                              | (Nurhayati et<br>al., 2016) |
|    | Albedo<br>Watermelon                                        | The research was carried out using an extraction method using Hal acid and CH3COOH solvents. | With results ranging between 9.4590- 11.2635% for HCl solvent and 6.5960- 7.4120 % for CH <sub>3</sub> COOH solvent, it can be concluded from this study that the albedo pectin content of watermelon obtained from the extraction procedure using HCl solvent is greater than that using CH <sub>3</sub> COOH solvent. | (Maulani et<br>al., 2016)   |
|    | Banana and<br>mango peels                                   | Acid (1M H <sub>2</sub> SO <sub>4</sub> )                                                    | Utilizing the mango peel industry to make pectin will solve the waste disposal problem and save the country's foreign exchange by reducing pectin imports.                                                                                                                                                              | (Girma &<br>Worku,<br>2016) |
|    | Citrus peels<br>(Lemon, lime,<br>orange, and<br>grapefruit) | Hard nitric acid, mild<br>nitric acid, and oxalic<br>acid.                                   | The analysis results show that temperature, extraction time, and pH significantly affect the characteristics of grapefruit peel pectin, while the effect is not                                                                                                                                                         | (Girma &<br>Worku,<br>2016) |




| No  | Source of<br>Hydrocolloids | Solvent Used  | Characteristics of the<br>Pectin Products<br>Produced | Reference               |
|-----|----------------------------|---------------|-------------------------------------------------------|-------------------------|
|     |                            |               | significant on peel                                   |                         |
|     |                            |               | pectin.                                               |                         |
|     |                            |               | The right type of                                     |                         |
|     |                            |               | solvent is obtained by                                | 4-5                     |
|     | Durian Skin                | Ethanol       | H <sub>2</sub> SO <sub>4</sub> , with an              | (Susanti et             |
|     |                            |               | optimum point of 5                                    | al., 2017)              |
|     |                            |               | minutes and a ratio of                                |                         |
|     |                            |               | 1:20.                                                 |                         |
|     |                            |               | The study comes to                                    |                         |
|     |                            |               | the conclusion that the                               |                         |
|     |                            |               | water content, pH,                                    |                         |
|     |                            |               | lowered sugar, physical                               |                         |
|     | Orange peel                | Citric Acid   | color, and sensory evaluation of the jam              | (Mas'ula,               |
|     | Orange peer                | Citile Acid   | were all significantly                                | 2018)                   |
|     |                            |               | impacted by the                                       |                         |
|     |                            |               | addition of orange                                    |                         |
|     |                            |               | peel pectin and                                       |                         |
|     |                            |               | sucrose.                                              | (Devianti et al., 2020) |
|     |                            |               | This study's                                          |                         |
|     |                            |               | conclusion is that the                                |                         |
|     |                            |               | pectin with a methoxyl                                |                         |
| 10  | D 1                        | C: . A . 1    | value less than 6.7%                                  | (Devianti et            |
| 10. | Banana peel waste          | Citric Acid   | and a percentage DE                                   | al., 2020)              |
|     |                            |               | less than 50% is                                      |                         |
|     |                            |               | categorized as low                                    |                         |
|     |                            |               | methoxyl pectin.                                      |                         |
|     |                            |               | Following its                                         |                         |
|     |                            |               | biochemical                                           |                         |
|     |                            |               | characterisation, crude                               |                         |
|     |                            |               | pectinase from                                        |                         |
|     |                            |               | Geotrichum candidum                                   | (Ahmed &                |
| 11. | Orange                     | Citric acid   | AA15 can be used in                                   | Sohail, 2020)           |
|     |                            |               | industry, particularly                                | ,                       |
|     |                            |               | in food-related                                       |                         |
|     |                            |               | operations where the                                  |                         |
|     |                            |               | enzyme must be active                                 |                         |
|     |                            |               | at room temperature. This research                    |                         |
|     |                            |               | concludes that banana                                 |                         |
|     | Durian skin and            |               | peel pectin is more                                   |                         |
| 12. | kepok banana               | Sulfuric acid | effective than durian                                 | (Hanifah et             |
| 12. | skin                       | ountaine acid | peel pectin as an                                     | al., 2021)              |
|     | UARAAA                     |               | adsorbent for Pb                                      |                         |
|     |                            |               | metal.                                                |                         |
|     |                            |               |                                                       |                         |



| No  | Source of<br>Hydrocolloids | Solvent Used                                                                                                                                                                                                       | Characteristics of the<br>Pectin Products<br>Produced                                                                                                                                                                                                                                                                                                                                         | Reference                        |
|-----|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 13. | Dragon Fruit<br>Skin       | Citric acid                                                                                                                                                                                                        | The highest yield was obtained from variations in the concentration of 1 N, temperature 60°C, and time 60 minutes of 15.67%, while the equivalent weight value did not meet IPPA standards. Pectin extracted from 0.5 N at 60°C for 30 minutes produces a stiffer, less elastic polymer. It has a greater thickness than pectin extracted from 0.5 N at a temperature of 70°C for 60 minutes. | (Kurniawan<br>& Adenia,<br>2022) |
| 14. | Breadfruit Skin            | In this research, breadfruit skin was used using chemicals using 96% ethanol, HCI, <i>n</i> -hexane technical NaOH (pa), distilled water, NaCI, NaOH, Pb (NO <sub>3</sub> ) <sub>2</sub> , and CuSO <sub>4</sub> . | This study concludes that there are differences in the ability to vary the weight, length, and time of Pb <sup>2+</sup> and Cd <sup>2+</sup> using breadfruit peel pectin.                                                                                                                                                                                                                    | (Anwar et al.,<br>2022)          |
| 15. | Dragon Fruit<br>Skin       | This study used 2.5% citric acid as a solvent for the extraction and characterization of pectin, as well as proximate testing of the inner pulp of red dragon fruit peels.                                         | According to the study's findings, CMC can be substituted for pectin extract and the inner pulp of red dragon fruit peel in ice cream recipes.                                                                                                                                                                                                                                                | (Kho et al.,<br>2022)            |
| 16. | Cocoa Fruit<br>Shell       | Hydrochloric acid                                                                                                                                                                                                  | The ratio of materials using solvent (w/v) influences the                                                                                                                                                                                                                                                                                                                                     |                                  |
|     |                            |                                                                                                                                                                                                                    | pectin yield with the highest yield of 5.74%, namely at ratio of 1:20 with pectic characteristics.                                                                                                                                                                                                                                                                                            | a                                |



| No  | Source of<br>Hydrocolloids | Solvent Used                                       | Characteristics of the<br>Pectin Products<br>Produced                                                                                                                                              | Reference                                              |
|-----|----------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 17. | Grapefruit Peel            | Eutectic Solvent (DES)                             | According to the study's findings, DES is a highly successful pectin extraction agent. In the food sector, pectin derived from grapefruit peel is a natural emulsifier that can be used.           | (Salazar<br>Ripoll &<br>Hincapié-<br>Llanos,<br>2023). |
| 18. | Grapefruit peel            | Citric Acid                                        | An effective method for obtaining high-quality pectin with superior qualities, such as greater thermal stability and a finer structure and particle size distribution, is the AHWE, PUUAE process. | (Wani & Uppaluri, 2023)                                |
| 19. | Young "Fuji" apple         | 1M NaOH and alkaline method                        | The results show that TAP is rich in RG-I areas and an LMP. TAP has much better gel strength, water-holding capacity, and a dense network structure than other gelling materials.                  | (Wang et al., 2023)                                    |
| 20. | Watermelon Rind            | Acetic Acid                                        | The study's findings indicate that watermelon rinds can produce pectin in a suitable amount and quality as an alternate source                                                                     | (Mamiru<br>& Gonfa,<br>2023)                           |
| 21. | Passion fruit skin         | Authentic solvent, L-proline: citric acid (Pro-CA) | According to our findings, Pro-CA is a very effective and environmentally acceptable solvent for removing valuable chemicals from agricultural byproducts.                                         | (Huo et al., 2023)                                     |
| 22. | Grapefruit Peel            | Organic Citric Acid                                | The results showed that pectin can be commercially extracted from grapefruit                                                                                                                       | (Hossain et al., 2024)                                 |







| No  | Source of<br>Hydrocolloids | Solvent Used          | Characteristics of the<br>Pectin Products<br>Produced | Reference    |
|-----|----------------------------|-----------------------|-------------------------------------------------------|--------------|
|     |                            |                       | peels via the MAE                                     |              |
|     |                            |                       | technique, which increases                            |              |
|     |                            |                       | its economic attractiveness.                          |              |
| 23. | Orange peel                | Green Solvent         | The results showed that                               | (Turan et    |
|     |                            |                       | rapid pectin extraction could                         | al., 2024)   |
|     |                            |                       | be achieved using a green                             |              |
|     |                            |                       | solvent and microwaving                               |              |
|     |                            |                       | orange peels.                                         |              |
| 24. | Fruit and Vegetables       | Extraction in acids,  | The Systematic Literature                             | (Girón-      |
|     |                            | microwaves,           | Review (SLR) results                                  | Hernández    |
|     |                            | ultrasound, enzymatic | revealed that extraction                              | et al.,      |
|     |                            | media, and aqueous    | methods in acid, microwave,                           | 2023)        |
|     |                            | biphasic extraction   | ultrasound, and enzymatic                             |              |
|     |                            |                       | media positively affect the                           |              |
|     |                            |                       | results and are widely used.                          |              |
| 25. | Apple pomace               | Mineral Acid          | Given that the extracted                              | (Liu et al., |
|     |                            |                       | pectin has a higher                                   | 2024)        |
|     |                            |                       | cytocompatibility than                                |              |
|     |                            |                       | commercial pectin, the type                           |              |
|     |                            |                       | of acid only has an impact                            |              |
|     |                            |                       | on the extracted material's                           |              |
|     |                            |                       | potency.                                              |              |

Various studies have evaluated the potential of natural materials as pectin sources and their applications in both food and non-food industries. For example, the Srikandi Putih corn variety produces a high yield of flour with good quality. The extraction method used also allows for a comprehensive analysis of the physicochemical and functional properties of the starch. However, manual embryo separation and the use of cloth filters result in partial starch loss (Firmansyah, suarni & Aqil, 2014). In addition, fruit waste such as jackfruit and red dragon fruit peels have been identified as a high-methoxyl pectin source. In jackfruit waste, the type of solvent and extraction conditions significantly affect the quality of the pectin obtained. Sodium hexametaphosphate provides the highest yield, but has low solubility and viscosity, making the resulting pectin inferior to commercial pectin. The type of acid and pH also play important roles in determining pectin quality, as seen in citrus pectin extraction. Mild oxalic acid produces high molecular weight pectin, while nitric acid produces low molecular weight pectin with fewer RG-I chains (Begum et al., 2014).

Water-based extraction methods are considered environmentally friendly and capable of producing high-purity pectin. However, these extracts tend to be darker in color and still contain traces of proteins and polysaccharides. Conversely, hydrochloric acid has been proven more



effective than acetic acid in extracting pectin, especially at  $80^{\circ}$ C, pH 2.6, for 90 minutes. Nevertheless, low pH and high temperatures increase the risk of pectin degradation, thus requiring strict process control (Kaya et al., 2014). Mango peels and durian albedo have also shown potential as raw materials for pectin. In mango peels, excessive extraction temperature and time can reduce quality and increase costs. Meanwhile, the MAE method using  $1N H_2SO_4$  on durian albedo can extract pectin quickly and efficiently, provided that power and exposure time are carefully controlled to prevent degradation of active compounds.

In product development, the best ginger jam formulation was obtained from a specific ingredient combination (P2S2), although the results were still influenced by panelist subjectivity, and shelf-life testing had not yet been conducted. Pectin extraction from banana peels using citric acid effectively produced low-methoxyl pectin, although this pectin had low purity and a brownish color, especially if the solvent volume was too high. Red dragon fruit peel serves not only as a pectin source but also in the production of biodegradable plastics and as a CMC substitute in ice cream. In these applications, pectin improves viscosity and antioxidant activity, but challenges include protein content, low overrun, and limited extract shelf life. Pectin from breadfruit peel has also been proven effective as a biosorbent for heavy metals, adding value to organic waste as a functional material.

MAE with hydrochloric acid effectively extracts pectin from cocoa husks, but the ratio of material to solvent must be maintained to preserve quality (Prasetyo et al, 2023). In general, each extraction method has its advantages and disadvantages. Acid hydrolysis results in high yields, but non-conventional methods such as MAE, UAE, and MW-DES can produce pectin with better functional quality. A comparative study between PUUAE and AHWE methods showed that PUUAE was superior in extracting pectin from pomelo peels. Extraction methods also affect pectin fermentability and molecular weight, as observed in pomelo peel extraction, which has proven beneficial in modulating gut microbiota and is suitable as a functional food ingredient. Pectin extraction from watermelon rinds using acetic acid produces high-quality pectin, and the use of RSM has proven effective in optimizing the process (Salazar Ripoll & Hincapié-Llanos, 2023). The extraction of pectin and phenolic compounds from passion fruit peel using DES (Pro-CA) also yielded high results and quality, although challenges remain due to high viscosity and potential overestimation of TPC.

Comparisons among methods show that MAE yields the largest amount of pectin, UAE is more efficient, and conventional heating, while affordable, is relatively energy-intensive. All these methods produce high-methoxyl pectin (HMP) of good quality. MW-DES is considered environmentally friendly and efficient in extracting pectin from citrus peels, though further testing is still needed regarding product purity and industrial feasibility. Finally, alkali extraction assisted by ultrasonography is fast and efficient in extracting RG-I-rich pectin from young apples. This method offers high efficiency and favorable gelling properties, although it produces pectin with low molecular weight and degree of esterification due to the effects of alkaline conditions and ultrasonic cavitation. This method offers high efficiency and favorable gelling properties, although it produces pectin with low molecular weight and degree of esterification due to the effects of alkaline conditions and ultrasonic cavitation (Wanda et al., 2023).

### CONCLUSION

Different extraction conditions have a considerable impact on the properties of the pectin produced, including pectin yield, equivalent weight, methoxyl content, galacturonic acid content,

-///

and degree of esterification, according to many results reported in the literature. In the food business, pectin is used to make jelly, jam, and marmalade, as well as to improve the viscosity, stability, texture, and appearance of food. It also forms gels and stabilizers in fruit juices. In the meantime, high-quality outcomes are obtained from biocomposites for wound dressings that contain chitosan, pectin, carboxymethyl cellulose (CMC), and alginate as their primary constituents. Additionally, the MAE approach produces the finest outcomes.

### **ACKNOWLEDGEMENTS**

Thank you to the Department of Food Industry Technology, Padjadjaran University, and the Department of Agricultural Product Technology, Mulawarman University, Indonesia.

### **REFERENCES**

- Ahmed, A., & Sohail, M. (2020). Characterization of pectinase from Geotrichum candidum AA15 and its potential application in orange juice clarification. *Journal of King Saud University-Science*, 32(1), 955–961. <a href="https://doi.org/10.1016/j.jksus.2019.07.002">https://doi.org/10.1016/j.jksus.2019.07.002</a>
- Anwar, K., Mardiyono, M., & Harmastuti, N. (2022). Characteristics of Breadfruit (*Artocarpus altilis* (Park.) Fosberg) Peel Pectin and Test of Heavy Metal Adsorption Ability in Stifera Semarang Laboratory Waste. *Jurnal Ilmiah Sains*, 22(1), 8. <a href="https://doi.org/10.35799/jis.v22i1.35537">https://doi.org/10.35799/jis.v22i1.35537</a>
- Begum, R., Aziz, M. G., Uddin, M. B., & Yusof, Y. A. (2014). Characterization of Jackfruit (Artocarpus Heterophyllus) Waste Pectin as Influenced by Various Extraction Conditions. *Agriculture and Agricultural Science Procedia*, 2, 244–251. https://doi.org/10.1016/j.aaspro.2014.11.035
- Devianti, V. A., Sa'diyah, L., & Amalia, A. R. (2020). Determination of Pectin Quality from Banana Peel Waste with Variation of Citric Acid Solvent Volume. *Jurnal Kimia*, 14(2), 169. https://doi.org/10.24843/jchem.2020.v14.i02.p10
- Firmansyah, suarni, I. ., & Aqil, M. (2014). Diversity of Starch Quality of Some Maize Varieties. *Jurnal Penelitian Pertanian Tanaman Pangan*, 32(1), 50–56.
- Girma, E., & Worku, M. T. (2016). Extraction and Characterization of Pectin From Selected Fruit Peel Waste. *International Journal of Scientific and Research Publications*, 6(2), 447–454. www.ijsrp.org
- Girón-Hernández, J., Pazmino, M., Barrios-Rodríguez, Y. F., Turo, C. T., Wills, C., Cucinotta, F., Benlloch-Tinoco, M., & Gentile, P. (2023). Exploring the effect of utilising organic acid solutions in ultrasound-assisted extraction of pectin from apple pomace, and its potential for biomedical purposes. *Heliyon*, *9*(7). https://doi.org/10.1016/j.heliyon.2023.e17736
- Hanifah, H. N., Hadiesoebroto, G., Reswari, L. A., Neves, J. A. V. R. M., Farmasi, J., Matematika, F., Alam, P., Al-ghifari, U., & Cisaranten, J. (2021). Comparison of Effectiveness of Durian Peel Pectin (*Durio zibethinus* L.) and Kepok Banana Peel Pectin (*Musa acuminata* X *balbisiana* ABB Group) as Lead Metal Bioadsorbent. *Chimica et Natura Acta*, *9*(2), 81–89. https://doi.org/10.24198/cna.v9.n2.35484
- Hossain, M. M., Ara, R., Yasmin, F., Suchi, M., & Zzaman, W. (2024). Microwave and ultrasound assisted extraction techniques with citric acid of pectin from Pomelo (Citrus



- *maxima*) peel. *Measurement: Food*, *13*(July 2023), 100135. https://doi.org/10.1016/j.meafoo.2024.100135
- Huo, D., Dai, J., Yuan, S., Cheng, X., Pan, Y., Wang, L., & Wang, R. (2023). Eco-friendly simultaneous extraction of pectins and phenolics from passion fruit (*Passiflora edulis* Sims) peel: Process optimization, physicochemical properties, and antioxidant activity. *International Journal of Biological Macromolecules*, 243(May), 125229. <a href="https://doi.org/10.1016/j.ijbiomac.2023.125229">https://doi.org/10.1016/j.ijbiomac.2023.125229</a>
- Kaya, M., Sousa, A. G., Crépeau, M. J., Sørensen, S. O., & Ralet, M. C. (2014). Characterization of citrus pectin samples extracted under different conditions: Influence of acid type and pH of extraction. *Annals of Botany*, 114(6), 1319–1326. <a href="https://doi.org/10.1093/aob/mcu150">https://doi.org/10.1093/aob/mcu150</a>
- Kho, M., K., Reni Swasti, Y., & Sinung Pranata. (2022). Kualitas Es Puter dengan Penambahan Bubur Kulit Buah Naga Merah Bagian Dalam (Hylocereus polyrhizus) dan Ekstrak Pektinnya sebagai Agen Penstabil Quality of Coconut Milk Ice Cream with Inner Layer Red Pitaya Peel Slurry (Hylocereus polyrhizus) and Its Pec. *Jurnal Aplikasi Teknologi Pangan*, 11(4), 159–172. https://doi.org/10.17728/jatp.10440
- Kurniawan, M. F., & Adenia, Z. (2022). Extraction of Red Dragon Fruit Peel (*Hylocereus polyrhizus*) Pectin with Citric Acid Solvent and its Application as Biodegradable Plastic Polymer. *Al-Kimiya*, *9*(1), 10–18. <a href="https://doi.org/10.15575/ak.v9i1.17425">https://doi.org/10.15575/ak.v9i1.17425</a>
- Liu, D., Xia, W., Liu, J., Wang, X., & Xue, J. (2024). Ultrasound-assisted alkali extraction of RG-I enriched pectin from thinned young apples: Structural characterization and gelling properties. *Food Hydrocolloids*, 151(January), 109879. <a href="https://doi.org/10.1016/j.foodhyd.2024.109879">https://doi.org/10.1016/j.foodhyd.2024.109879</a>
- Mamiru, D., & Gonfa, G. (2023). Extraction and characterization of pectin from watermelon rind using acetic acid. *Heliyon*, *9*(2), e13525. <a href="https://doi.org/10.1016/j.heliyon.2023.e13525">https://doi.org/10.1016/j.heliyon.2023.e13525</a>
- Maulani, M. T., Aslamiah, A., & Wicakso, D. R. (2016). Pectin Extraction from Watermelon Albedo by Acid Extraction Process. *Konversi*, 3(1), 1. <a href="https://doi.org/10.20527/k.v3i1.131">https://doi.org/10.20527/k.v3i1.131</a>
- Nurhayati, N., Maryanto, M., & Tafrikhah, R. (2016). Pectin Extraction from Banana Peels and Bunches with Various Temperatures and Methods. *Jurnal Agritech*, 36(03), 327. <a href="https://doi.org/10.22146/agritech.16605">https://doi.org/10.22146/agritech.16605</a>
- Prasetyo, A., & et al. (2023). Extraction of Cocoa Shell Pectin (*Theobroma cacao* L.) Using Microwave Assisted Extract Method with Hydrochloric Acid. *Jurnal Teknik Kimia Vokasional (JIMSI)*, 3(2775–9075), 44–53. <a href="https://doi.org/10.46964/jimsi.v3i2.546">https://doi.org/10.46964/jimsi.v3i2.546</a>
- Salazar Ripoll, C. S., & Hincapié-Llanos, G. A. (2023). Evaluation of sources and methods of pectin extraction from fruit and Vegetable wastes: A Systematic Literature Review (SLR). *Food Bioscience*, 51(December 2022). <a href="https://doi.org/10.1016/j.fbio.2022.102278">https://doi.org/10.1016/j.fbio.2022.102278</a>
- Susanti, D., Hartati, I., & Suwardiyono. (2017). Microwave-assisted extraction of durian albedo pectin. *Inovasi Teknik Kimia*, 2(1), 19–23.
- Turan, O., Isci, A., Yılmaz, M. S., Tolun, A., & Sakiyan, O. (2024). Microwave-assisted extraction of pectin from orange peel using deep eutectic solvents. *Sustainable Chemistry and Pharmacy*, 37(November 2023), 101352. https://doi.org/10.1016/j.scp.2023.101352
- Wanda, N., Bahri, S., Muarif, A., Kimia, J. T., Teknik, F., Malikussaleh, U., Utama, K., Teungku, C., Reuleut, N., & Batu, M. (2023). Comparison of characteristics of chitosan pectin biocomposites for primary wound dressing using cmc (*Carboxymethyl cellulose*) and alginate. 5(Oktober), 735–749.



Bioeksperimen, Volume 11 No. 1 (March 2025)

ISSN 2460-1365

- Wang, Y., Liu, J., chen, L., Jin, S., An, C., Chen, L., Yang, B., Schols, H. A., de Vos, P., Bai, W., & Tian, L. (2023). Effects of thermal treatments on the extraction and in vitro fermentation patterns of pectins from pomelo (Citrus grandis). *Food Hydrocolloids*, 141(December 2022), 108755. https://doi.org/10.1016/j.foodhyd.2023.108755
- Wani, K. M., & Uppaluri, R. V. S. (2023). Characterization of pectin extracted from pomelo peel using pulsed ultrasound assisted extraction and acidic hot water extraction process. *Applied Food Research*, 3(2), 100345. https://doi.org/10.1016/j.afres.2023.100345